中国胸心血管外科临床杂志

中国胸心血管外科临床杂志

心脏干细胞治疗心血管疾病的研究进展

查看全文

随着干细胞研究的深入,人们发现心脏像皮肤、脑、肝脏等组织一样,也属于可再生器官,自身也存在干细胞即心脏干细胞,具有干细胞共有的自我更新、克隆形成、定向分化成心肌细胞、平滑肌细胞和内皮细胞的特性。由于具有组织特异性及心系定向分化潜能,心脏干细胞在心血管疾病治疗方面较其他干细胞具有明显的优势,但存在心脏干细胞移植率低等问题。为了克服上述不足,近年来,人们又开始探索将细胞疗法与一些新技术相结合治疗心血管疾病,如细胞疗法与组织工程、基因疗法、心脏干细胞外泌体的联合应用等,为心血管疾病的治疗提供了新思路。本文主要针对心脏干细胞治疗心血管疾病机制及目前心脏干细胞与新技术的联合应用进展进行综述。

With the discovery of cardiac stem cell, the conception of the heart considered to be a terminally differentiated organ was changed. Cardiac stem cells possess the common characteristics of self-renew, clone formation and differentiating into cardiomyocyte, smooth muscle cell, and endothelial cell. Because of the properties of tissue specificity and lineage commitment, cardiac stem cells are considered to have great advantages over other stem cells in the treatment of cardiovascular disease. However, the low rate of engraftment still remains a problem to be solved. In recent years, people attempted to combine stem cell therapy with other ways, such as tissue engineering, gene therapy, exosome therapy, to cure cardiovascular diseases, aiming at finding better ways to treat the cardiovascular disease. This article is mainly for the reviewing of the mechanisms underlying the stem cell therapy and the combinatory use of new technology emerged these years.

关键词: 心脏干细胞; 细胞疗法; 心肌再生; 心血管疾病

Key words: Cardiac stem cell; cell therapy; cardiomyocyte regeneration; cardiovascular disease

引用本文: 吕井井, 施国丞, 陈会文. 心脏干细胞治疗心血管疾病的研究进展. 中国胸心血管外科临床杂志, 2017, 24(12): 983-987. doi: 10.7507/1007-4848.201608018 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
1. Beltrami AP, Barlucchi L, Torella D, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell, 2003, 114(6): 763-776.
2. Messina E, De Angelis L, Frati G, et al. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res, 2004, 95(9): 911-921.
3. Smith RR, Barile L, Cho HC, et al. Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation, 2007, 115(7): 896-908.
4. Ott HC, Matthiesen TS, Brechtken J, et al. The adult human heart as a source for stem cells: repair strategies with embryonic-like progenitor cells. Nat Clin Pract Cardiovasc Med, 2007, 4(Suppl 1): S27-S39.
5. Matsuura K, Nagai T, Nishigaki N, et al. Adult cardiac Sca-1-positive cells differentiate into beating cardiomyocytes. J Biol Chem, 2004, 279(12): 11384-11391.
6. Bu L, Jiang X, Martin-Puig S, et al. Human ISL1 heart progenitors generate diverse multipotent cardiovascular cell lineages. Nature, 2009, 460(7251): 113-117.
7. Liang SX, Tan TY, Gaudry L, et al. Differentiation and migration of Sca1+/CD31- cardiac side population cells in a murine myocardial ischemic model. Inter J Cardiol, 2010, 138(1): 40-49.
8. Carr CA, Stuckey DJ, Tan JJ, et al. Cardiosphere-derived cells improve function in the infarcted rat heart for at least 16 weeks--an MRI study. PloS One, 2011, 6(10): e25669.
9. Davis DR, Ruckdeschel Smith R, Marban E. Human cardiospheres are a source of stem cells with cardiomyogenic potential. Stem Cells, 2010, 28(5): 903-904.
10. Vieira JM, Riley PR. Epicardium-derived cells: a new source of regenerative capacity. Heart, 2011, 97(1): 15-19.
11. Urbanek K, Cesselli D, Rota M, et al. Stem cell niches in the adult mouse heart. Proc Natl Acad Sci USA, 2006, 103(24): 9226-9231.
12. Bearzi C, Rota M, Hosoda T, et al. Human cardiac stem cells. Proc Natl Acad Sci USA, 2007, 104(35): 14068-14073.
13. Bollini S, Smart N, Riley PR. Resident cardiac progenitor cells: at the heart of regeneration. J Mol Cell Cardiol, 2011, 50(2): 296-303.
14. van Vliet P, Roccio M, Smits AM, et al. Progenitor cells isolated from the human heart: a potential cell source for regenerative therapy. Neth Heart J, 2008, 16(5): 163-169.
15. Limana F, Capogrossi MC, Germani A. The epicardium in cardiac repair: from the stem cell view. Pharmacol Ther, 2011, 129(1): 82-96.
16. Garbade JA, Dhein M, Dhein S, et al. Distribution pattern of viable resident C-Kit positive cardiac stem cells in the human ischemic heart as a pool for cardiac regeneration. J Heart Lung Transplant, 2014, 33(4): 254.
17. Itzhaki-Alfia A, Leor J, Raanani E, et al. Patient characteristics and cell source determine the number of isolated human cardiac progenitor cells. Circulation, 2009, 120(25): 2559-2566.
18. Sandstedt J, Jonsson M, Dellgren G, et al. Human C-kit+CD45- cardiac stem cells are heterogeneous and display both cardiac and endothelial commitment by single-cell qPCR analysis. Biochem Biophys Res Commun, 2014, 443(1): 234-238.
19. Ye J, Boyle A, Shih H, et al. Sca-1+ cardiosphere-derived cells are enriched for Isl1-expressing cardiac precursors and improve cardiac function after myocardial injury. PloS One, 2012, 7(1): e30329.
20. Dawn B, Stein AB, Urbanek K, et al. Cardiac stem cells delivered intravascularly traverse the vessel barrier, regenerate infarcted myocardium, and improve cardiac function. Proc Natl Acad Sci USA, 2005, 102(10): 3766-3771.
21. Li Q, Guo Y, Ou Q, et al. Intracoronary administration of cardiac stem cells in mice: a new, improved technique for cell therapy in murine models. Basic Res Cardiol, 2011, 106(5): 849-864.
22. Tang XL, Rokosh G, Sanganalmath SK, et al. Intracoronary administration of cardiac progenitor cells alleviates left ventricular dysfunction in rats with a 30-day-old infarction. Circulation, 2010, 121(2): 293-305.
23. Mirotsou M, Jayawardena TM, Schmeckpeper J, et al. Paracrine mechanisms of stem cell reparative and regenerative actions in the heart. J Mol Cell Cardiol, 2011, 50(2): 280-289.
24. Chimenti I, Smith RR, Li TS, et al. Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice. Circ Res, 2010, 106(5): 971-980.
25. Stastna M, Chimenti I, Marban E, et al. Identification and functionality of proteomes secreted by rat cardiac stem cells and neonatal cardiomyocytes. Proteomics, 2010, 10(2): 245-253.
26. Stastna M, Abraham MR, Van Eyk JE. Cardiac stem/progenitor cells, secreted proteins, and proteomics. FEBS Letters, 2009, 583(11): 1800-1807.
27. Urbanek K, Rota M, Cascapera S, et al. Cardiac stem cells possess growth factor-receptor systems that after activation regenerate the infarcted myocardium, improving ventricular function and long-term survival. Circ Res, 2005, 97(7): 663-673.
28. Yeghiazarians Y, Zhang Y, Prasad M, et al. Injection of bone marrow cell extract into infarcted hearts results in functional improvement comparable to intact cell therapy. Mol Ther, 2009, 17(7): 1250-1256.
29. Zhang YH, Zhang GW, Gu TX, et al. Exogenous basic fibroblast growth factor promotes cardiac stem cell-mediated myocardial regeneration after miniswine acute myocardial infarction. Coron Artery Dis, 2011, 22(4): 279-285.
30. Ellison GM, Torella D, Dellegrottaglie S, et al. Endogenous cardiac stem cell activation by insulin-like growth factor-1/hepatocyte growth factor intracoronary injection fosters survival and regeneration of the infarcted pig heart. J Am Coll Cardiol, 2011, 58(9): 977-986.
31. Linke A, Muller P, Nurzynska D, et al. Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. Proc Natl Acad Sci USA, 2005, 102(25): 8966-8971.
32. Rota M, Padin-Iruegas ME, Misao Y, et al. Local activation or implantation of cardiac progenitor cells rescues scarred infarcted myocardium improving cardiac function. Circ Res, 2008, 103(1): 107-116.
33. Padin-Iruegas ME, Misao Y, Davis ME, et al. Cardiac progenitor cells and biotinylated insulin-like growth factor-1 nanofibers improve endogenous and exogenous myocardial regeneration after infarction. Circulation, 2009, 120(10): 876-887.
34. Tan SC, Gomes RS, Yeoh KK, et al. Preconditioning of cardiosphere-derived cells with hypoxia or prolyl-4-hydroxylase inhibitors increases stemness and decreases reliance on oxidative metabolism. Cell Transplant, 2016, 25(1): 35-53.
35. Hatzistergos KE, Quevedo H, Oskouei BN, et al. Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation. Circ Res, 2010, 107(7): 913-922.
36. Williams AR, Hatzistergos KE, Addicott B, et al. Enhanced effect of combining human cardiac stem cells and bone marrow mesenchymal stem cells to reduce infarct size and to restore cardiac function after myocardial infarction. Circulation, 2013, 127(2): 213-223.
37. Avolio E, Meloni M, Spencer HL, et al. Combined intramyocardial delivery of human pericytes and cardiac stem cells additively improves the healing of mouse infarcted hearts through stimulation of vascular and muscular repair. Circ Res, 2015, 116(10): e81-e94.
38. Shimizu T, Yamato M, Kikuchi A, et al. Cell sheet engineering for myocardial tissue reconstruction. Biomaterials, 2003, 24(13): 2309-2316.
39. Alshammary S, Fukushima S, Miyagawa S, et al. Impact of cardiac stem cell sheet transplantation on myocardial infarction. Surg Today, 2013, 43(9): 970-976.
40. Soejima K, Negishi N, Nozaki M, et al. Effect of cultured endothelial cells on angiogenesis in vivo. Plast Reconstr Surg, 1998, 101(6): 1552-1560.
41. Li Z, Guan J. Thermosensitive hydrogels for drug delivery. Expert Opin Drug Deliv, 2011, 8(8): 991-1007.
42. Ou L, Li W, Zhang Y, et al. Intracardiac injection of matrigel induces stem cell recruitment and improves cardiac functions in a rat myocardial infarction model. J Cell Mol Med, 2011, 15(6): 1310-1318.
43. Takehara N, Tsutsumi Y, Tateishi K, et al. Controlled delivery of basic fibroblast growth factor promotes human cardiosphere-derived cell engraftment to enhance cardiac repair for chronic myocardial infarction. J Am Coll Cardiol, 2008, 52(23): 1858-1865.
44. Sun X, Nunes SS. Overview of hydrogel-based strategies for application in cardiac tissue regeneration. Biomed Mater, 2015, 10(3): 034005.
45. Liu Q, Tian S, Zhao C, et al. Porous nanofibrous poly(L-lactic acid) scaffolds supporting cardiovascular progenitor cells for cardiac tissue engineering. Acta Biomater, 2015, 26: 105-114.
46. Lee YS, Lim KS, Oh JE, et al. Development of porous PLGA/PEI1.8k biodegradable microspheres for the delivery of mesenchymal stem cells (MSCs). J Control Release, 2015, 205: 128-133.
47. Yaniz-Galende E, Chen J, Chemaly E, et al. Stem cell factor gene transfer promotes cardiac repair after myocardial infarction via in situ recruitment and expansion of c-kit+ cells. Circ Res, 2012, 111(11): 1434-1445.
48. Fischer KM, Cottage CT, Wu W, et al. Enhancement of myocardial regeneration through genetic engineering of cardiac progenitor cells expressing Pim-1 kinase. Circulation, 2009, 120(21): 2077-2087.
49. Hu S, Huang M, Nguyen PK, et al. Novel microRNA prosurvival cocktail for improving engraftment and function of cardiac progenitor cell transplantation. Circulation, 2011, 124(11 Suppl): S27-S34.
50. Lavu M, Gundewar S, Lefer DJ. Gene therapy for ischemic heart disease. J Mol Cell Cardiol, 2011, 50(5): 742-750.
51. Yockman JW, Kastenmeier A, Erickson HM, et al. Novel polymer carriers and gene constructs for treatment of myocardial ischemia and infarction. J Control Release, 2008, 132(3): 260-266.
52. Yi F, Wu H, Jia GL, et al. Effect of nanoparticle with vascular endothelial growth factor gene transferred into ischemic myocardium: experiment with rabbit. Zhonghua Yi Xue Za Zhi, 2006, 86(8): 510-514.
53. Johnstone RM. Revisiting the road to the discovery of exosomes. Blood Cells Mol Dis, 2005, 34(3): 214-219.
54. Ibrahim AG, Cheng K, Marban E. Exosomes as critical agents of cardiac regeneration triggered by cell therapy. Stem Cell Reports, 2014, 2(5): 606-619.
55. Gray WD, French KM, Ghosh-Choudhary S, et al. Identification of therapeutic covariant microRNA clusters in hypoxia-treated cardiac progenitor cell exosomes using systems biology. Circ Res, 2015, 116(2): 255-263.
56. Khan M, Nickoloff E, Abramova T, et al. Embryonic stem cell-derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction. Circ Res, 2015, 117(1): 52-64.