中国胸心血管外科临床杂志

中国胸心血管外科临床杂志

对孤立性肺结节恶性概率预测模型的验证、比较和改良

查看全文

目的 分析影响孤立性肺结节(solitary pulmonary nodule, SPN)恶性概率的危险因素,对已有的 SPN 恶性概率预测模型进行验证、比较和改良。 方法 回顾分析自 2017 年 3 月至 2017 年 9 月在中日友好医院接受诊治、术后获得明确病理诊断的 117 例 SPN 患者的临床资料,归纳患者的年龄、性别、吸烟史、戒烟时间、恶性肿瘤史等病史资料,收集影像学上结节最大径、所处部位、毛刺状、分叶征、钙化灶等特点,记录 CEA 和 Cyfra21-1 等血清学检验结果,应用单因素分析模型分析临床资料与术后病理良恶性诊断的统计学关联,应用不同 SPN 恶性概率预测模型绘制受试者工作特征曲线(receiver operating characteristic curve,ROC),得到各模型的曲线下面积(area under curve,AUC)、灵敏度、特异度、阳性预测值、阴性预测值等并进行比较,探索模型改进方法。 结果 117 例患者中经病理诊断为恶性肿瘤的 93 例(79.5%),良性肿物 24 例(20.5%),单因素分析发现患者年龄、结节最大径、血清学 CEA 和 Cyfra21-1 水平、毛刺状、分叶征及钙化表现在良、恶性 SPN 之间的差异有统计学意义。应用现有的 SPN 恶性概率预测模型绘制 ROC 曲线,得出的 AUC 值分别为 0.813±0.051(Mayo 模型)、0.697±0.066(VA 模型)和 0.854±0.045(北京大学人民医院模型)。 结论 患者年龄、结节最大径、血清学 CEA 和 Cyfra21-1 水平、毛刺状、分叶征及钙化表现是判断 SPN 良恶性的可能危险因素。北大人民医院模型对 SPN 良恶性鉴别的准确性较高,更适合国人。将血清学检查指标如 CEA 和 Cyfra21-1 整合入模型并调整年龄所占权重可能会提高预测模型的准确性。

Objective To identify risk factors that affect the verification of malignancy in patients with solitary pulmonary nodules (SPN) and verify different prediction models for malignant probability of SPN. Methods We retrospectively analyzed 117 patients of SPN with definite post-operative pathological diagnosis whom underwent surgical procedure in China-Japan Friendship Hospital from March of 2017 to September of 2017. Age, gender, smoking history, malignancy history of patients, imaging features of the nodule including maximum diameter, location, spiculation, lobulation, calcification and serum level of CEA and Cyfra21-1 were assessed as potential risk factors. Univariable analysis was used to establish statistical correlation between risk factors and postoperative pathological diagnosis. Receiver operating characteristic (ROC) curves were drawn by different predictive models for the malignant probability of SPN to get areas under the curves (AUC values), sensitivity, specificity, positive predictive values, negative predictive values for each model, respectively. The predictive effectiveness of each model was statistically assessed subsequently. Results In 117 patients, 93 patients were malignant (79.5%), 24 patients were benign (20.5%). Statistical significant difference was found between benign and malignant group in age, maximum diameter, serum level of CEA and Cyfra21-1, spiculation, lobulation and calcification of the nodules. The AUC values were 0.813±0.051 (Mayo model), 0.697±0.066 (VA model) and 0.854±0.045 (Peking University People's Hospital model), respectively. Conclusion Age, maximum diameter of the nodule, serum level of CEA and Cyfra21-1, spiculation, lobulation and calcification are potential independent risk factors associated with the malignant probability of SPN. Peking University People's Hospital model is of high accuracy and clinical value for patients with SPN. Adding serum index into the prediction model as a new risk factor and adjusting the weight of age in the model might improve the accuracy of prediction for SPN.

关键词: 孤立性肺结节; 肺癌; 预测模型

Key words: Solitary pulmonary nodule; lung cancer; prediction model

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Wahidi MM, Govert JA, Goudar RK, et al. Evidence for the treatment of patients with pulmonary nodules: when is it lung cancer?: ACCP evidence-based clinical practice guidelines (2nd edition). Chest, 2007, 132(3 Suppl): 94S-107S.
2. Tan BB, Flaherty KR, Kazerooni EA, et al. The solitary pulmonary nodule. Chest, 2003, 123(1 Suppl): 89S-96S.
3. Nair A, Hansell DM. European and North American lung cancer screening experience and implications for pulmonary nodule management. Eur Radiol, 2011, 21(12): 2445-2454.
4. Swensen SJ, Silverstein MD, Ilstrup DM, et al. The probability of malignancy in solitary pulmonary nodules. Application to small radiologically indeterminate nodules. Arch Intern Med, 1997, 157(8): 849-855.
5. Gould MK, Ananth L, Barnett PG, et al. A clinical model to estimate the pretest probability of lung cancer in patients with solitary pulmonary nodules. Chest, 2007, 131(2): 383-388.
6. Li Y, Chen KZ, Sui XZ, et al. Establishment of a mathematical prediction model to evaluate the probability of malignancy or benign in patients with solitary pulmonary nodules. Beijing Da Xue Xue Bao Yi Xue Ban, 2011, 43(3): 450-454.
7. Li Y, Wang J. A mathematical model for predicting malignancy of solitary pulmonary nodules. World J Surg, 2012, 36(4): 830-835.
8. Schultz EM, Sanders GD, Trotter PR, et al. Validation of two models to estimate the probability of malignancy in patients with solitary pulmonary nodules. Thorax, 2008, 63(4): 335-341.
9. Mery CM, Pappas AN, Bueno R, et al. Relationship between a history of antecedent cancer and the probability of malignancy for a solitary pulmonary nodule. Chest, 2004, 125(6): 2175-2181.
10. Mikita K, Saito H, Sakuma Y, et al. Growth rate of lung cancer recognized as small solid nodule on initial CT findings. Eur J Radiol, 2012, 81(4): e548-e553.
11. Gould MK, Fletcher J, Iannettoni MD, et al. Evaluation of patients with pulmonary nodules: when is it lung cancer?: ACCP evidence-based clinical practice guidelines (2nd edition). Chest, 2007, 132(3 Suppl): 108S-130S.
12. Yonemori K, Tateishi U, Uno H, et al. Development and validation of diagnostic prediction model for solitary pulmonary nodules. Respirology, 2007, 12(6): 856-862.
13. Swensen SJ, Viggiano RW, Midthun DE, et al. Lung nodule enhancement at CT: multicenter study. Radiology, 2000, 214(1): 73-80.
14. Albert RH, Russell JJ. Evaluation of the solitary pulmonary nodule. Am Fam Physician, 2009, 80(8): 827-831.
15. Ambrosini V, Nicolini S, Caroli P, et al. PET/CT imaging in different types of lung cancer: an overview. Eur J Radiol, 2012, 81(5): 988-1001.
16. Shen J, Liu Z, Todd NW, et al. Diagnosis of lung cancer in individuals with solitary pulmonary nodules by plasma microRNA biomarkers. BMC Cancer, 2011, 11: 374.
17. 杨德松, 李运, 姜冠潮, 等. 孤立性肺结节良恶性判断数学预测模型的临床验证及应用. 中华胸心血管外科杂志, 2012, 28(2): 82-85.
18. Vineis P, Hoek G, Krzyzanowski M, et al. Air pollution and risk of lung cancer in a prospective study in Europe. Int J Cancer, 2006, 119(1): 169-174.
19. Dela Cruz CS, Tanoue LT, Matthay RA. Lung cancer: epidemiology, etiology, and prevention. Clin Chest Med, 2011, 32(4): 605-644.
20. Kupert E, Anderson M, Liu Y, et al. Plasma secretory phospholipase A2-IIa as a potential biomarker for lung cancer in patients with solitary pulmonary nodules. BMC Cancer, 2011, 11: 513.