中国胸心血管外科临床杂志

中国胸心血管外科临床杂志

慢性缺氧对新生大鼠脑白质及脑发育的影响

查看全文

目的 研究慢性缺氧对新生大鼠脑白质(white matter,WM)损伤及脑发育延迟的作用,探讨该模型与紫绀型先天性心脏病(congenital heart defects,CHD)慢性缺氧脑损伤的相似性。 方法 选取 3 日龄(P3)新生 Sprague-Dawley 大鼠随机分为实验组(n=36,FiO2 为 10.5%±1%)和对照组(n=36,FiO2 为 21%),饲养 12 d 至 P14。检测:(1)每日测量 SD 大鼠体重变化及 P14 新鲜脑重;(2)P14 脑切片 H&E 染色:观察脑组织病理变化;(3)P14 脑切片免疫组织化学染色:观察脑 WM 区域少突胶质祖细胞(oligodendroglial progenitor cells,OPC)少突胶质前体细胞(preoligodendrocytes,PreOL)和髓磷脂蛋白(myelin basic protein,MBP)变化;(4)P14 新鲜鼠脑 WM 区域约 50 mg,组织蛋白抽提,Western-blot 方法定量分析 MBP 表达量变化;(5)行为学测试:每组各留 9 只饲养至 P30,行转棒实验评估运动功能和协调能力。 结果 (1)实验组体重、脑重增长明显慢于对照组(P14)[体重(14.92±1.26)g vs. (30.26±1.81)g,t=7.51,P<0.01;脑重(0.68±0.05) gvs. (0.97±0.04)g,t=13.26,P<0.01];(2)HE 染色:实验组脑室扩大(P<0.01),脑 WM 区域水肿、结构疏松杂乱,局部软化坏死灶,细胞排列紊乱;(3)免疫组织化学染色:实验组 OPC、PreOL 数量少于对照组(64.8±6.3vs. 126.2±8.4,t=11.19,P<0.01;19.1±7.6vs. 46.7±9.5,t=7.28,P<0.01),实验组 MBP 比对照组稀疏、杂乱;(4)Western blot 检测:实验组 MBP 较对照组表达量明显下降(P<0.01);(5)行为学测试:实验组棒上停留时间较对照组明显缩短(P<0.01)。 结论 慢性缺氧可造成新生大鼠脑 WM 损伤和脑发育延迟,具有紫绀型 CHD 围产期慢性缺氧 WM 损伤和脑发育不成熟的相似特征。

Objective To study the impact of chronic hypoxia on white matter (WM) injury and brain development delay using a neonatal rat model, and to explore its value in simulating chronic hypoxic brain damage in cyanotic congenital heart disease (CHD). Methods Three-day-old Sprague-Dawley rats were randomly distributed to experiment group (n=36, FiO2 10.5%±1%) and control group (n=36, FiO2 21±0%) and were raised for 12 days.(1) Body weight of SD rats was recorded every day and fresh brain weight was measured on P14;(2) H&E staining was performed on sections of brain tissue to observe pathological changes and ventricular size;(3) Immunohistochemistry (IHC) was applied to reveal alterations of oligodendroglial progenitor cells (OPC), preoligodendrocytes (PreOL) and myelin basic protein (MBP) in brain WM area; (4) Protein was extracted from 50 mg of brain tissue in WM area and expression of MBP was determined using Western blot; (5) Motor function and coordination of rats (P30) were assessed via Rotation experiment. Results (1) Body weight and brain weight were significantly less in experiment group compared with control group on P14 (body weight 14.92±1.26 gvs. 30.26±1.81 g, t=7.51, P<0.01; brain weight 0.68±0.05 gvs. 0.97±0.04 g, t=13.26, P<0.01); (2) HE staining: Sections of brain tissue from experiment group showed ventricular size enlargement (P<0.01), disordered cell organization, local neuronal death and leukomalacia; (3) The number of OPC and PreOL in experiment group were significantly less than that in control group(64.8±6.3vs. 126.2±8.4, t=11.19, P<0.01; 19.1±7.6vs. 46.7±9.5, t=7.28, P<0.01, respectively). MBP distribution was sparse and disorganized in experiment group. (4) Western-blot: Expression of MBP was less in experiment groups (P<0.01); (5) Behavioral test: Time on rotarod was less in experiment group (P<0.01). Conclusion Chronic hypoxia can result in WM injury and brain development delay in neonatal rats, with features comparable to those seen in infants with cyanotic CHD.

关键词: 慢性缺氧; 先天性心脏病; 脑发育; 白质损伤; 模型

Key words: Chronic hypoxia; Congenital heart disease; Brain development; White matter injury; Model

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Mahle WT, Tavani F, Zimmerman RA, et al. An MRI study of neurological injury before and after congenital heart surgery. Circulation, 2002, 106(12 Suppl 1): I109-I114.
2. International Cardiac Collaborative on Neurodevelopment (ICCON) Investigators. Impact of Operative and Postoperative Factors on Neurodevelopmental Outcomes After Cardiac Operations. Ann Thorac Surg, 2016, 102(3): 843-849.
3. Morton PD, Ishibashi N, Jonas RA, et al. Congenital cardiac anomalies and white matter injury. Trends Neurosci, 2015, 38(6): 353-363.
4. 冷军, 刘慧娟, 王磊, 等. 缺血缺氧性脑损伤动物模型. 国际脑血管病杂志, 2010, 18(4): 315-320.
5. Semple BD, Blomgren K, Gimlin K, et al. Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species. Prog Neurobiol, 2013, 106-107: 1-16.
6. Licht DJ. Brain hypoxia before surgery; a tale of two cells: Astrocytes and oligodendrocytes. J Thorac Cardiovasc Surg, 2016, 151(1): 273-274.
7. Back SA, Craig A, Luo NL, et al. Protective effects of caffeine on chronic hypoxia-induced perinatal white matter injury. Ann Neurol, 2006, 60(6): 696-705.
8. Lin S, Fan LW, Pang Y, et al. IGF-1 protects oligodendrocyte progenitor cells and improves neurological functions following cerebral hypoxia-ischemia in the neonatal rat. Brain Res, 2005, 1063(1): 15-26.
9. Wang Y, Li B, Li Z, et al. Improvement of hypoxia-ischemia-induced white matter injury in immature rat brain by ethyl pyruvate. Neurochem Res, 2013, 38(4): 742-752.
10. Bellinger DC, Wypij D, Rivkin MJ, et al. Adolescents with d-transposition of the great arteries corrected with the arterial switch procedure: neuropsychological assessment and structural brain imaging. Circulation, 2011, 124(12): 1361-1369.
11. Licht DJ, Shera DM, Clancy RR, et al. Brain maturation is delayed in infants with complex congenital heart defects. J Thorac Cardiovasc Surg, 2009, 137(3): 529-536.
12. Filley CM. White matter dementia. Ther Adv Neurol Disord, 2012, 5(5): 267-277.
13. Jablonska B, Scafidi J, Aguirre A, et al. Oligodendrocyte regeneration after neonatal hypoxia requires FoxO1-mediated p27Kip1 expression. J Neurosci, 2012, 32(42): 14775-14793.
14. Scafidi J, Hammond TR, Scafidi S, et al. Intranasal epidermal growth factor treatment rescues neonatal brain injury. Nature, 2014, 506(7487): 230-234.
15. Volpe JJ, Kinney HC, Jensen FE, et al. The developing oligodendrocyte: key cellular target in brain injury in the premature infant. Int J Dev Neurosci, 2011, 29(4): 423-440.
16. Zaghloul N, Patel H, Ahmed MN. A model of Periventricular Leukomalacia (PVL) in neonate mice with histopathological and neurodevelopmental outcomes mimicking human PVL in neonates. PLoS One, 2017, 12(4): e0175438.
17. Rice JE 3rd, Vannucci RC, Brierley JB. The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol, 1981, 9(2): 131-141.
18. Benjelloun N, Renolleau S, Represa A, et al. Inflammatory responses in the cerebral cortex after ischemia in the P7 neonatal Rat. Stroke, 1999, 30(9): 1916-1923.