中国胸心血管外科临床杂志

中国胸心血管外科临床杂志

DDX46 基因对裸鼠食管鳞癌移植瘤生长的影响

查看全文

目的 观察 DDX46 基因沉默后食管鳞癌 Eca-109 细胞裸鼠皮下移植瘤的生长变化,在活体动物模型中进一步研究 DDX46 在食管鳞癌发生发展中的作用。 方法 应用 RNA 干扰技术通过慢病毒载体构建获得 DDX46 基因沉默的慢病毒颗粒(实验组:DDX46-shRNA-LV)及空载体慢病毒颗粒(对照组:Control-LV),分别感染食管鳞癌 Eca-109 细胞株,每只 4×106个细胞量注射至 BALB/c 裸鼠右腋皮下;以人永生化食管鳞状上皮细胞 Het-1A 为空白对照组,每侧 4×106 个细胞量分别注射至 BALB/c 裸鼠双侧腋皮下。检测各组移植瘤生长情况,活体成像仪观察各组荧光表达量。Western blotting 检测 DDX46 基因沉默后移植瘤组织凋亡信号通路关键分子表达的变化。 结果 与对照组相比,沉默 DDX46 基因使裸鼠移植瘤体积减小、重量减轻,生长减缓(P<0.001);小动物活体成像显示 DDX46-shRNA-LV 组荧光区总荧光表达量和平均荧光表达量均明显低于 Control-LV 组(P<0.001);Het-1A 细胞接种裸鼠不成瘤。Western blotting 检测显示,与对照组比较,沉默 DDX46 基因使移植瘤 DDX46 蛋白表达水平显著下降(P<0.01),而 cleaved Caspase-3 和 cleaved PARP-1 蛋白表达水平显著上升(P<0.01)。 结论 沉默 DDX46 基因可显著抑制裸鼠移植瘤的生长,其机制可能是通过激活细胞凋亡信号通路而发挥抑瘤作用。

Objective To observe the growth of xenografted tumor in nude mice after DDX46 expression was decreased, and to further study the role of DDX46 in the development and progression of esophageal squamous cell carcinoma. Methods DDX46-shRNA mediated RNAi was applied to silencing DDX46 in Eca-109 cells. Twenty-five female BALB/c nude mice were divided into 3 groups: DDX46-shRNA-LV, Control-LV, and Het-1A. The prepared Eca-109 cells of DDX46-shRNA-LV and Control-LV were subcutaneously injected into the right armpit of mice (4×106 cells per mouse), while Het-1A cells were subcutaneously injected into the bilateral armpits of mice (4×106 cells per side). Tumor growth was monitored twice a week on the 14th day after injection. Tumor volume was measured with calipers, in vivo imager to observe the fluorescence of each group. Further, Western blotting analysis was used to detect the changes of apoptosis signaling molecules in xenografted tumor after DDX46 silence. Results The growth of xenografted tumor in nude mice was significantly slower in DDX46-shRNA-LV group than Control-LV group throughout the study period (P<0.001). Western blotting analysis showed that silencing DDX46 effectively suppressed the expression of DDX46, and upregulated the expression of cleaved Caspase-3 and cleaved PARP-1 in xenografted tumor (P<0.01). Conclusions DDX46 is involved in the development and progression of esophageal squamous cell carcinoma, and the silence of DDX46 expression can inhibit the growth of esophageal squamous cell carcinoma, which probably by positive regulation of apoptosis signaling pathway.

关键词: 食管鳞癌; DDX46; 移植瘤; 凋亡; 活体成像

Key words: Esophageal squamous cell carcinoma; DDX46; xenografted tumor; apoptosis; in vivo influorescence imaging

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Lee AS, Kranzusch PJ, Doudna JA, et al. eIF3d is an mRNA cap-binding protein that is required for specialized translation initiation. Nature, 2016, 536(7614): 96-99.
2. Kosowski TR, Keys HR, Quan TK, et al. DExD/H-box Prp5 protein is in the spliceosome during most of the splicing cycle. RNA, 2009, 15(7): 1345-1362.
3. Liang WW, Cheng SC. A novel mechanism for Prp5 function in prespliceosome formation and proofreading the branch site sequence. Genes Dev, 2015, 29(1): 81-93.
4. Li M, Ma YC, Huang P, et al. Lentiviral DDX46 knockdown inhibits growth and induces apoptosis in human colorectal cancer cells. Gene, 2015, 560(2): 237-244.
5. Jiang F, Zhang D, Li G, et al. Knockdown of DDX46 inhibits the invasion and tumorigenesis in osteosarcoma cells. Oncol Res, 2017, 25(3): 417-425.
6. 刘熹, 张冲, 黄邓高, 等. DDX46 基因慢病毒载体的构建及其在人膀胱癌细胞中的表达. 安徽医学, 2018, 39(1): 1-5.
7. Li B, Li YM, He WT, et al. Knockdown of DDX46 inhibits proliferation and induces apoptosis in esophageal squamous cell carcinoma cells. Oncol Rep, 2016, 36(1): 223-230.
8. 高华, 宋铁牛, 李斌, 等. 解旋酶 DDX46 基因对食管鳞癌 Eca-109 细胞增殖及凋亡的影响. 癌变·畸变·突变, 2017, 29(3): 216-221, 229.
9. Zielske SP, Stevenson M. Importin 7 may be dispensable for human immunodeficiency virus type 1 and simian immunodeficiency virus infection of primary macrophages. J Virol, 2005, 79(17): 11541-11546.
10. Chen W, Sun K, Zheng R, et al. Cancer incidence and mortality in China, 2014. Chin J Cancer Res, 2018, 30(1): 1-12.
11. Allemani C, Matsuda T, Di Carlo V, et al. Global surveillance of trends in cancer survival 2000-14(CONCORD-3): analysis of individual records for 37513025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet, 2018, 391(10125): 1023-1075.
12. Smyth EC, Lagergren J, Fitzgerald RC, et al. Oesophageal cancer. Nat Rev Dis Primers, 2017, 3: 17048.
13. Linder P, Fuller-Pace FV. Looking back on the birth of DEAD-box RNA helicases. Biochim Biophys Acta, 2013, 1829(8): 750-755.
14. Owttrim GW. RNA helicases: diverse roles in prokaryotic response to abiotic stress. RNA Biol, 2013, 10(1): 96-110.
15. Heerma van Voss MR, van Diest PJ, Raman V. Targeting RNA helicases in cancer: the translation trap. Biochim Biophys Acta, 2017, 1868(2): 510-520.
16. Abdelhaleem M, Maltais L, Wain H. The human DDX and DHX gene families of putative RNA helicases. Genomics, 2003, 81(6): 618-622.
17. Porter AG, Jänicke RU. Emerging roles of caspase-3 in apoptosis. Cell Death Differ, 1999, 6(2): 99-104.
18. Lavrik IN, Golks A, Krammer PH. Caspases: pharmacological manipulation of cell death. J Clin Invest, 2005, 115(10): 2665-2672.
19. Zhang C, Kuang M, Li M, et al. SMC4, which is essentially involved in lung development, is associated with lung adenocarcinoma progression. Sci Rep, 2016, 6: 34508.
20. Zheng Q, Hou J, Zhou Y, et al. The RNA helicase DDX46 inhibits innate immunity by entrapping m6A-demethylated antiviral transcripts in the nucleus. Nat Immunol, 2017, 18(10): 1094-1103.