中国胸心血管外科临床杂志

中国胸心血管外科临床杂志

超氧对主动脉夹层患者围术期红细胞氧化应激以及能量代谢的体外实验研究

查看全文

目的 观察不同浓度超氧对主动脉夹层(aortic dissection,AD)患者围术期体外血液样本中红细胞氧化应激以及能量代谢的影响,为临床应用超氧自体血疗法(ozonated autoheμmotherapy,ozone-AHT)提供理论实验基础。 方法 收集本中心 2016 年 3~8 月 20 例 AD 患者手术前后的血液标本进行不同浓度(0 μg/ml,40 μg/ml,60 μg/ml,80 μg/ml,160 μg/ml)的超氧(ozone)预处理。ELISA 法测定氧化/抗氧化指标(MDA、SOD)以及能量代谢指标(Na+-K+-ATP、2,3-DPG)。 结果 在对照组(0 μg/ml)中,术后 MDA 含量比术前含量增高(P<0.05),术后 SOD、Na+-K+-ATP、2,3-DPG 较术前组降低(P<0.05)。40 μg /ml,60 μg /ml,80 μg /ml 组术后 MDA 含量比术前组含量减少(P<0.05),SOD、Na+-K+-ATP、2,3-DPG 较术前组增多(P<0.05),但是,术前三个浓度组组间(40 μg/ml,60 μg/ml,80 μg/ml)与术后三个浓度组组间(40 μg/ml,60 μg/ml,80 μg/ml)MDA、SOD、Na+-K+-ATP、2,3-DPG 数值变化差异无统计学意义(P>0.05);160 μg/ml 与其它所有浓度组相比,术前、术后 MDA 含量均增加,术前、术后 SOD、Na+-K+-ATP、2,3-DPG 均减少,差异有统计学意义(P<0.05)。 结论 40~80 μg/ml 的 ozone 可以提高 AD 患者血样中 RBCs 膜抗氧化能力、降低氧化应激反应,提高 RBCs 膜的能量代谢,因此该浓度范围的 ozone 应用于 AD 围术期 ozone-AHT 是安全可行的。

Objective To investigate the effect of ozone on oxidative stress and energy metabolism change of blood from aortic dissection (AD) patients for providing preliminary evidence of application of ozonated autoheμmotherapy (ozone-AHT) in AD patients. Methods Twenty AD patients were consecutively included in the First Affiliated Hospital of Harbin Medical University from March 2016 to August 2016, and blood samples were collected from all participants and ozonized in vitro. Malondialdehyde (MDA), superoxide RBCs smutase (SOD), Na+-K+-ATP, 2,3 -Bisphosphoglyceric acid (2,3-DPG) at different ozone concentrations were evaluated by ELISA. Results After ozonation of whole blood, all the parameters level were similar in samples exposed to 40 μg/ml to 80 μg/ml ozone, while the levels of SOD, Na+-K+-ATP, 2,3-DPG decreased and the level of MDA increased in samples exposed to 160 μg/ml in both pre-group and post-group, and the result was opposite in the 0 μg/ml ozone group. Conclusion Ozone improves energy metabolism and reduces oxidative damage in blood from AD patients, and therapeutic dose ozone is very safety of ozone-AHT.

关键词: 主动脉夹层; 超氧; 氧化应激; 能量代谢

Key words: Aortic dissection; Ozone; Oxidative stress; Energy metabolism

登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Liu N, Zhang W, Ma W, et al. Risk factors for hypoxemia following surgical repair of acute type A aortic dissection. Interact Cardiovasc Thorac Surg, 2017, 24(2): 251-256.
2. Ge H, Jiang Y, Jin Q, et al. Nomogram for the prediction of postoperative hypoxemia in patients with acute aortic dissection. BMC Anesthesiol, 2018, 18(1): 146.
3. Bocci V, Borrelli E, Travagli V, et al. The ozone paradox: ozone is a strong oxidant as well as a medical drug. Med Res Rev, 2009, 29(4): 646-682.
4. Bocci V, Zanardi I, Travagli V, et al. Oxygenation-ozonation of blood during extracorporeal circulation: in vitro efficiency of a new gas exchange device. Artif Organs, 2007, 31(9): 743-748.
5. Re L, Rowen R, Travagli V. Ozone therapy and its use in medicine: further comments. Cardiology, 2017, 136(4): 269.
6. Üreyen ÇM, Baş CY, Arslan Ş. Myocardial infarction after ozone therapy: is ozone Therapy Dr. Jekyll or Mr. Hyde? Cardiology, 2015, ,[Epub ahead of print].
7. Molinari F, Simonetti V, Franzini M, et al. Ozone autohemotherapy induces long-term cerebral metabolic changes in multiple sclerosis patients. Int J Immunopathol Pharmacol, 2014, 27(3): 379-389.
8. Sheng W, Yang HQ, Chi YF, et al. Independent risk factors for hypoxemia after surgery for acute aortic dissection. Saudi Med J, 2015, 36(8): 940-946.
9. Liu Z, Pang X, Zhang X, et al. Incidence and risk factors of delirium in patients after type-a aortic dissection surgery. J Cardiothorac Vasc Anesth, 2017, 31(6): 1996-1999.
10. McDonald CI, Fraser JF, Coombes JS, et al. Oxidative stress during extracorporeal circulation. Eur J Cardiothorac Surg, 2014, 46(6): 937-943.
11. Melek FE, Baroncini LA, Repka JC, et al. Oxidative stress and inflammatory response increase during coronary artery bypass grafting with extracorporeal circulation. Rev Bras Cir Cardiovasc, 2012, 27(1): 61-65.
12. Test ST, Mitsuyoshi J. Activation of the alternative pathway of complement by calcium-loaded erythrocytes resulting from loss of membrane phospholipid asymmetry. J Lab Clin Med, 1997, 130(2): 169-182.
13. Mosior M, Mikołajczak A, Gomułkiewicz J. The effect of ATP on the order and the mobility of lipids in the bovine erythrocyte membrane. Biochim Biophys Acta, 1990, 1022(3): 361-364.
14. García-de-la-Asunción J, Pastor E, Perez-Griera J, et al. Oxidative stress injury after on-pump cardiac surgery: effects of aortic cross clamp time and type of surgery. Redox Rep, 2013, 18(5): 193-199.
15. Soto ME, Zuñiga-Muñoz A, Guarner Lans V, et al. Infusion of Hibiscus sabdariffa L. Modulates oxidative stress in patients with Marfan syndrome. Mediators Inflamm, 2016, 2016: 8625203.
16. Billings FT 4th, Ball SK, Roberts LJ 2nd, et al. Postoperative acute kidney injury is associated with hemoglobinemia and an enhanced oxidative stress response. Free Radic Biol Med, 2011, 50(11): 1480-1487.
17. Almaz ME, Sönmez IŞ. Ozone therapy in the management and prevention of caries. J Formos Med Assoc, 2015, 114(1): 3-11.
18. Smith NL, Wilson AL, Gandhi J, et al. Ozone therapy: an overview of pharmacodynamics, current research, and clinical utility. Med Gas Res, 2017, 7(3): 212-219.
19. Wang L, Chen Z, Liu Y, et al. Ozone oxidative postconditioning inhibits oxidative stress and apoptosis in renal ischemia and reperfusion injury through inhibition of MAPK signaling pathway. Drug Des Devel Ther, 2018, 12: 1293-1301.
20. Wasser G. Ischemic stroke penumbra and extracorporeal ozone treatment. Neuroradiol J, 2013, 26(3): 243-251.