中国胸心血管外科临床杂志

中国胸心血管外科临床杂志

低氧三维培养微环境通过 HIF-1α 信号通路促进骨髓间充质干细胞增殖机制研究

查看全文

目的 为了探究低氧三维培养微环境对骨髓间充质干细胞增殖的影响及影响机制。 方法 P5 代小鼠骨髓间充质干细胞和 P(3HB-co-4HB)分别在三维常氧(20%)和三维低氧(4%)条件下共同培养,24 h 后 CCK-8 法测定两组细胞的增殖情况;12 h 后 Real-time quantitative PCR 检测 HIF-1α 基因表达水平;24 h 后 western blotting 检测两组 HIF-1α 蛋白的表达情况。 结果 共同培养 24 h 后,CCK-8 法检测显示低氧组 OD 值显著大于常氧组 (0.455±0.027vs.0.352±0.090,n=12,P<0.05);低氧培养 12 h 后,低氧组的 HIF-1αmRNA 表达水平显著高于常氧组(P<0.05);低氧培养 24 h 后 Western blotting 检测到同常氧组(0.47±0.05)比较,低氧组(0.63± 0.06)HIF-1α 蛋白相对表达水平显著增高(n=3,P<0.05)。 结论 低氧三维微环境可促进骨髓间充质干细胞的增殖,这种效应可能与 HIF-1α 信号通路的激活有关。

Objective To investigate the effects of hypoxic three-dimensional culture microenvironment on the proliferation of bone marrow mesenchymal stem cells and its mechanism. Methods P5 generation mouse bone marrow mesenchymal stem cells and P (3HB-co-4HB) were co-cultured under normoxia three-dimensional (20%) and hypoxia three-dimensional (4%) respectively. After 24 hours, the proliferation of the two groups was determined by CCK-8 method. The expression of HIF-1α gene was detected by Real-time quantitative PCR after 12 hours. Western blotting was used to detected the expression of HIF-1α protein after 24 hours. Results After 24 hours, the CCK-8 method showed that the OD value of the hypoxia group was significantly higher than that of the normoxia group (0.455±0.027vs.0.352±0.090, n=12, P<0.05). After 12 hours of hypoxia culture, the expression level of HIF-1α mRNA in hypoxia group was significantly higher than that in normoxia group (P<0.05). Compared with the normoxic group (0.47± 0.05), the relative expression level of HIF-1α protein in hypoxia group (0.63±0.06) was significantly increased by Western blotting after 24 hours (n=3, P<0.05). Conclusion The hypoxic three-dimensional microenvironment can promote the proliferation of bone marrow mesenchymal stem cells, which may be related to the activation of HIF-1α signaling pathway.

关键词: 低氧微环境; 三维培养; P(3HB-co-4HB); 心肌梗死; HIF-1α 信号通路

Key words: Hypoxic microenvironment; three-dimensional culture; P(3HB-co-4HB); myocardial infarction; HIF-1α pathway

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. van der Kooy D, Weiss S. Why stem cells? Science, 2000, 287(5457): 1439-1441.
2. Schwarz ER, Patterson M, Kloner RA. Cardiomyocyte transplantation——a cell replacement for repair of myocardial infarction? Z Kardiol, 1998, 87(1): 1-7.
3. Watanabe E, Smith DM Jr, Delcarpio JB, et al. Cardiomyocyte transplantation in a porcine myocardial infarction model. Cell Transplant, 1998, 7(3): 239-246.
4. Xu SJ, Mu JS*, Zhang JQ, Bo P. In vitro three-dimensional coculturing poly3-hydroxybutyrate-co-3-hydroxyhexanoate with mouse-induced pluripotent stem cells for myocardial patch application. J Biomater Appl, 2016, 30(8): 1273-1282.
5. Niu H, Mu J, Zhang J, et al. Comparative study of three types of polymer materials co-cultured with bone marrow mesenchymal stem cells for use as a myocardial patch in cardiomyocyte regeneration. J Mater Sci Mater Med, 2013, 24(6): 1535-1542.
6. Ma YX, Mu JS, Zhang JQ, et al. Myocardial patch formation by three-dimensional 3-hydroxybutyrate-co-4-hydroxybutyrate cultured with mouse embryonic stem cells. J Biomater Tiss Eng, 2016, 6: 1-6.
7. Choi JW, Kim KE, Lee CY, et al. Alterations in cardiomyocyte differentiation-related proteins in rat mesenchymal stem cells exposed to hypoxia. Cell Physiol Biochem, 2016, 39(4): 1595-1607.
8. Strauer BE, Brehm M, Zeus T, et al. Intracoronary, human autologous stem cell transplantation for myocardial regeneration following myocardial infarction. Dtsch Med Wochenschr, 2001, 126(34-35): 932-938.
9. Weng Y, Zhang X, Liu A, et al. The effect of allogeneic cardiac stem cells in left ventricular geometry and function in a rat model of myocardial infarction. Cardiovasc Ther, 2018, 36(1).
10. Stamm C, Westphal B, Kleine HD, et al. Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet, 2003, 361(9351): 45-46.
11. Stamm C, Kleine HD, Westphal B, et al. CABG and bone marrow stem cell transplantation after myocardial infarction. Thorac Cardiovasc Surg, 2004, 52(3): 152-158.
12. Liu C, Abedian R, Meister R, et al. Influence of perfusion and compression on the proliferation and differentiation of bone mesenchymal stromal cells seeded on polyurethane scaffolds. Biomaterials, 2012, 33(4): 1052-1064.
13. Lv L, Ren YL, Chen JC, et al. Application of CRISPRi for prokaryotic metabolic engineering involving multiple genes, a case study: Controllable P(3HB-co-4HB) biosynthesis. Metab Eng, 2015, 29: 160-168.
14. Saito Y, Doi Y. Microbial synthesis and properties of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in Comamonas acidovorans. Int J Biol Macromol, 1994, 16(2): 99-104.
15. Correia C, Serra M, Espinha N, et al. Combining hypoxia and bioreactor hydrodynamics boosts induced pluripotent stem cell differentiation towards cardiomyocytes. Stem Cell Rev, 2014, 10(6): 786-801.
16. Dai Y, Xu M, Wang Y, et al. HIF-1alpha induced-VEGF overexpression in bone marrow stem cells protects cardiomyocytes against ischemia. J Mol Cell Cardiol, 2007, 42(6): 1036-1044.
17. Ng KM, Lee YK, Chan YC, et al. Exogenous expression of HIF-1 alpha promotes cardiac differentiation of embryonic stem cells. J Mol Cell Cardiol, 2010, 48(6): 1129-1137.