中国胸心血管外科临床杂志

中国胸心血管外科临床杂志

3D 打印技术在二尖瓣疾病治疗中的应用

查看全文

二尖瓣疾病是最常见的心脏瓣膜疾病,其主要治疗方式是手术或介入治疗。然而,二尖瓣及其瓣周解剖结构复杂,手术难度大,要求心外科医师具有丰富的手术经验。3D 打印技术能将 2D 医学图像转化为三维实体模型,能详细清晰地提供空间解剖信息及模拟手术的手段,为患者提供安全的、个性化的治疗。本文就 3D 打印技术在二尖瓣疾病的治疗的应用进行综述。

Mitral valve disease is the most common cardiac valve disease. The main treatment of mitral valve disease is surgery or interventional therapy. However, as the anatomy of mitral valve is complicated, the operation is particularly difficult. As a result, it requires sophisticated experiences for surgeons. Three-dimensional (3D) printing technology can transform two-dimensional medical images into 3D solid models. So it can provide clear spatial anatomical information and offer safe and personalized treatment for the patients by simulating surgery process. This article reviews the applications of 3D printing technology in the treatment of mitral valve disease.

关键词: 3D 打印技术; 二尖瓣疾病; 心脏手术

Key words: 3D printing technology; mitral valve disease; cardiac surgery

登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Nkomo VT, Gardin JM, Skelton TN, et al. Burden of valvular heart diseases: a population-based study. Lancet, 2006, 368(9540): 1005-1011.
2. Remenyi B, ElGuindy A, Smith SC Jr, et al. Valvular aspects of rheumatic heart disease. Lancet, 2016, 387(10025): 1335-1346.
3. Nishimura RA, Vahanian A, Eleid MF, et al. Mitral valve disease--current management and future challenges. Lancet, 2016, 387(10025): 1324-1334.
4. Pomerance A. Ageing changes in human heart valves. Br Heart J, 1967, 29(2): 222-231.
5. Farooqi KM, Sengupta PP. Echocardiography and three-dimensional printing: sound ideas to touch a heart. J Am Soc Echocardiogr, 2015, 28(4): 398-403.
6. Mitsouras D, Liacouras P, Imanzadeh A, et al. Medical 3D Printing for the Radiologist. Radiographics, 2015, 35(7): 1965-1988.
7. Izzo RL, O’Hara RP, Iyer V, et al. 3D printed cardiac phantom for procedural planning of a transcatheter native mitral valve replacement. Proc SPIE Int Soc Opt Eng, 2016, 9789: pii: 978908.
8. Little SH, Vukicevic M, Avenatti E, et al. 3D printed modeling for patient-specific mitral valve intervention: repair with a clip and a plug. JACC Cardiovasc Interv, 2016, 9(9): 973-975.
9. Yamada T, Osako M, Uchimuro T, et al. Three-dimensional printing of life-like models for simulation and training of minimally invasive cardiac surgery. Innovations (Phila), 2017, 12(6): 459-465.
10. Vukicevic M, Puperi DS, Grande-Allen KJ, et al. Erratum to: 3D printed modeling of the mitral valve for catheter-based structural interventions. Ann Biomed Eng, 2016, 44(11): 3432.
11. Sardari Nia P, Heuts S, Daemen J, et al. Preoperative planning with three-dimensional reconstruction of patient’s anatomy, rapid prototyping and simulation for endoscopic mitral valve repair. Interact Cardiovasc Thorac Surg, 2017, 24(2): 163-168.
12. Mankovich NJ, Cheeseman AM, Stoker NG. The display of three-dimensional anatomy with stereolithographic models. J Digit Imaging, 1990, 3(3): 200-203.
13. Dankowski R, Baszko A, Sutherland M, et al. 3D heart model printing for preparation of percutaneous structural interventions: description of the technology and case report. Kardiol Pol, 2014, 72(6): 546-551.
14. Giannopoulos AA, Steigner ML, George E, et al. Cardiothoracic Applications of 3-dimensional Printing. J Thorac Imaging, 2016, 31(5): 253-272.
15. Vukicevic M, Mosadegh B, Min JK, et al. Cardiac 3D Printing and its Future Directions. JACC Cardiovasc Imaging, 2017, 10(2): 171-184.
16. Ibrahim D, Broilo TL, Heitz C, et al. Dimensional error of selective laser sintering, three-dimensional printing and PolyJet models in the reproduction of mandibular anatomy. J Craniomaxillofac Surg, 2009, 37(3): 167-173.
17. Greil GF, Wolf I, Kuettner A, et al. Stereolithographic reproduction of complex cardiac morphology based on high spatial resolution imaging. Clin Res Cardiol, 2007, 96(3): 176-185.
18. Byrne N, Velasco Forte M, Tandon A, et al. A systematic review of image segmentation methodology, used in the additive manufacture of patient-specific 3D printed models of the cardiovascular system. JRSM Cardiovasc Dis, 2016, 5: 2048004016645467.
19. Mahmood F, Owais K, Taylor C, et al. Three-dimensional printing of mitral valve using echocardiographic data. JACC Cardiovasc Imaging, 2015, 8(2): 227-229.
20. Witschey WR, Pouch AM, McGarvey JR, et al. Three-dimensional ultrasound-derived physical mitral valve modeling. Ann Thorac Surg, 2014, 98(2): 691-694.
21. Navia JL, Cosgrove DM 3rd. Minimally invasive mitral valve operations. Ann Thorac Surg, 1996, 62(5): 1542-1544.
22. Joint Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology (ESC), European Association for Cardio-Thoracic Surgery (EACTS), Vahanian A, et al. Guidelines on the management of valvular heart disease (version 2012). Eur Heart J, 2012, 33(19): 2451-2496.
23. Hayek E, Gring CN, Griffin BP. Mitral valve prolapse. Lancet, 2005, 365(9458): 507-518.
24. Owais K, Pal A, Matyal R, et al. Three-dimensional printing of the mitral annulus using echocardiographic data: science fiction or in the operating room next door. J Cardiothorac Vasc Anesth, 2014, 28(5): 1393-1396.
25. Verberkmoes NJ, Verberkmoes-Broeders EM. A novel low-fidelity simulator for both mitral valve and tricuspid valve surgery: the surgical skills trainer for classic open and minimally invasive techniques. Interact Cardiovasc Thorac Surg, 2013, 16(2): 97-101.
26. Hossien A. Low-fidelity simulation of mitral valve surgery: simple and effective trainer. J Surg Educ, 2015, 72(5): 904-909.
27. Nishimura RA, Otto CM, Bonow RO, et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Thorac Cardiovasc Surg, 2014, 148(1): e1-e132.
28. 诸葛瑞琪, 吴永健. 经导管二尖瓣修复术的研究及应用进展. 中华心血管病杂志, 2017, 45(4): 345-348.
29. 诸葛瑞琪, 田艳蒙, 吴永健. 经导管二尖瓣置换的研究进展与展望. 中国循环杂志, 2016, (8): 819-821.
30. El Sabbagh A, Eleid MF, Matsumoto JM, et al. Three-dimensional prototyping for procedural simulation of transcatheter mitral valve replacement in patients with mitral annular calcification. Catheter Cardiovasc Interv, 2018,[Epub ahead of print].
31. Mashari A, Knio Z, Jeganathan J, et al. Hemodynamic testing of patient-specific mitral valves using a pulse duplicator: a clinical application of three-dimensional printing. J Cardiothorac Vasc Anesth, 2016, 30(5): 1278-1285.
32. Shi D, Liu K, Zhang X, et al. Applications of three-dimensional printing technology in the cardiovascular field. Intern Emerg Med, 2015, 10(7): 769-780.
33. Meier LM, Meineri M, Qua Hiansen J, et al. Structural and congenital heart disease interventions: the role of three-dimensional printing. Neth Heart J, 2017, 25(2): 65-75.
34. Fedorovich NE, Alblas J, Hennink WE, et al. Organ printing: the future of bone regeneration. Trends Biotechnol, 2011, 29(12): 601-606.
35. Duan B, Kapetanovic E, Hockaday LA, et al. Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells. Acta Biomater, 2014, 10(5): 1836-1846.