中国胸心血管外科临床杂志

中国胸心血管外科临床杂志

选择性切除左侧星状神经节下部对心房颤动犬快速心室率的影响

查看全文

目的 研究切除左侧星状神经节(left stellate ganglion,LSG)下部对心房颤动(房颤)维持时快速心室率的影响,并探究其机制。 方法 成年健康雄性比格犬 12 只,体重 15~25 kg。随机分为 2 组(对照组和实验组),每组各 6 只。对照组:只应用左心房快速起搏建立犬持续性房颤模型,不做其他处理。实验组:应用左心房快速起搏建立犬持续性房颤模型,房颤模型建立成功后再切除犬 LSG 下部。房颤模型建立成功后,在麻醉前、麻醉后、LSG 切除后 30 min 及 1 个月,分别记录犬的心室率;并在 LSG 切除后 1 个月、处死犬之前,测定犬的房室结(atrioventricular node,AVN)前传有效不应期(effective refractory period,ERP)。 结果 左心房快速起搏 3~6 周后,所有犬均成功构建成稳定的持续房颤模型。切除 LSG 下部 30 min 后(对照组不切除,仅观察 30 min):对照组犬的平均心室率约为(144.5±4.2)次/min,实验组犬的平均心室率约为(121.5±8.7)次/min(P<0.001);切除 LSG 下部 1 个月后(对照组不切除,仅观察 1 个月):对照组犬的平均心室率约为(139.2±5.6)次/min,实验组犬的平均心室率约为(106.5±4.9)次/min(P<0.001)。切除 LSG 下部 1 个月后,实验组犬的 AVN 前传 ERP 较对照组犬的 AVN 前传 ERP 明显延长[(265.6±7.8)msvs.(251.1±4.6)ms,P=0.003]。 结论 切除 LSG 下部可以有效减慢房颤犬的快速心室率,其机制之一可能就是通过延长房颤犬的 AVN 前传 ERP。

Objective To determine the effects of resecting the lower half of left stellate ganglion (LSG) on fast ventricular rate (VR) in persistent atrial fibrillation (AF) and its mechanism. Methods Twelve mature healthy male beagle dogs (15–25 kg) were studied. They were randomly divided into two groups (an experimental group and a control group, 6 dogs in each group). The control group were merely performed with rapid left atrial pacing to induce persistent AF. The experimental group were disposed with rapid left atrial pacing and received resection of the lower half of LSG after the persistent AF was documented. Simultaneously the ventricular rates were monitored separately before anesthesia, after anesthesia, 30 minutes and one month after LSG resection. The forward passing effective refractory period (ERP) of the canine atrioventricular node (AVN) was also measured. Results Each dog was documented with persistent AF after 3–6 weeks’ left atrial pacing. After resecting the lower half of LSG for 30 minutes (the control group was only observed for 30 minutes without LSG resection), the average VR of the control group attained 144.5±4.2 beats/min, while that of the experimental group was 121.5±8.7 beats/min (P<0.001). After resecting the lower half of LSG for one month (the control group was observed for one month without LSG resection), the average VR of the control group was 139.2±5.6 beats/min, while that of the experimental group was 106.5±4.9 beats/min (P<0.001). Meantime, the forward passing ERP of AVN of the experimental group was significantly prolonged than that of the control group (265.6±7.8 msvs.251.1±4.6 ms, P=0.003). Conclusion Resection of the lower half of LSG is efficient in reducing VR in canines with persistent AF, one of the mechanisms of which may be prolonging the forward passing ERP of AVN.

关键词: 心房颤动; 星状神经节; 心室率; 房室结; 有效不应期

Key words: Atrial fibrillation; stellate ganglion; ventricular rate; atrioventricular node; effective refractory period

引用本文: 蔡捷, 姜兆磊, 卢荣鑫, 王巍, 汤敏, 马南, 刘浩, 梅举, 丁芳宝. 选择性切除左侧星状神经节下部对心房颤动犬快速心室率的影响. 中国胸心血管外科临床杂志, 2019, 26(1): 88-91. doi: 10.7507/1007-4848.201809027 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Jiang Z, Zhao Y, Tsai WC, et al. Effects of vagal nerve stimulation on ganglionated plexi nerve activity and ventricular rate in ambulatory dogs with persistent atrial fibrillation. JACC Clin Electrophysiol, 2018, 4(8): 1106-1114.
2. Chen PS, Chen LS, Fishbein MC, et al. Role of the autonomic nervous system in atrial fibrillation: pathophysiology and therapy. Circ Res, 2014, 114(9): 1500-1515.
3. Linz D, Ukena C, Mahfoud F, et al. Atrial autonomic innervation: a target for interventional antiarrhythmic therapy. J Am Coll Cardiol, 2014, 63(3): 215-224.
4. Armour JA. Functional anatomy of intrathoracic neurons innervating the atria and ventricles. Heart Rhythm, 2010, 7(7): 994-996.
5. Jiang Z, Zhao Y, Doytchinova A, et al. Using skin sympathetic nerve activity to estimate stellate ganglion nerve activity in dogs. Heart Rhythm, 2015, 12(6): 1324-1332.
6. Tan AY, Zhou S, Ogawa M, et al. Neural mechanisms of paroxysmal atrial fibrillation and paroxysmal atrial tachycardia in ambulatory canines. Circulation, 2008, 118(9): 916-925.
7. Zhou Q, Hu J, Guo Y, et al. Effect of the stellate ganglion on atrial fibrillation and atrial electrophysiological properties and its left-right asymmetry in a canine model. Exp Clin Cardiol, 2013, 18(1): 38-42.
8. Kirchhof P, Benussi S, Kotecha D, et al. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J, 2016, 37(38): 2893-2962.
9. 姜兆磊, 尹航, 梅举, 等. 心外膜环左心房消融联合肺静脉消融对心房颤动的影响. 中国胸心血管外科临床杂志, 2016, 23(7): 719-723.
10. Yuan Y, Jiang Z, Zhao Y, et al. Long-term intermittent high-amplitude subcutaneous nerve stimulation reduces sympathetic tone in ambulatory dogs. Heart Rhythm, 2018, 15(3): 451-459.
11. Shen MJ, Zipes DP. Role of the autonomic nervous system in modulating cardiac arrhythmias. Circ Res, 2014, 114(6): 1004-1021.
12. Shen MJ, Choi EK, Tan AY, et al. Neural mechanisms of atrial arrhythmias. Nat Rev Cardiol, 2011, 9(1): 30-39.
13. Jayachandran JV, Sih HJ, Winkle W, et al. Atrial fibrillation produced by prolonged rapid atrial pacing is associated with heterogeneous changes in atrial sympathetic innervation. Circulation, 2000, 101(10): 1185-1191.
14. 王巍, 姜兆磊, 梅举. 星状神经节参与心房颤动发病的研究进展. 国际心血管病杂志, 2017, 44(5): 295-298.
15. Zhou Q, Hu J, Guo Y, et al. Effect of the stellate ganglion on atrial fibrillation and atrial electrophysiological properties and its left-right asymmetry in a canine model. Exp Clin Cardiol, 2013, 18(1): 38-42.
16. Zhang Y, Mazgalev TN. Atrioventricular node functional remodeling induced by atrial fibrillation. Heart Rhythm, 2012, 9(9): 1419-1425.
17. Sairaku A, Nakano Y, Suenari K, et al. Electrical remodeling of the atrioventricular node caused by persistent atrial fibrillation in humans. J Cardiovasc Electrophysiol, 2016, 27(8): 918-922.