中国胸心血管外科临床杂志

中国胸心血管外科临床杂志

低 T3 综合征与心脏手术

查看全文

非甲状腺疾病综合征(NTI)常常发生于成人和儿童心脏手术术后,其中以低 T3 综合征最为常见,这种甲状腺激素代谢水平的异常会显著影响术后血流动力学的稳定与心功能的恢复。相关激素补充治疗的临床意义仍有争论。本文通过回顾既往的临床研究来阐述低 T3 综合征在各种心脏手术中的临床表现及相关干预措施。

The non-thyroidal illness syndrome always occurs in the post-operative period following cardiac surgery in adults and children. Low T3 syndrome is the most common one. This abnormal thyroid hormone metabolism can significantly affect the stability of hemodynamics and the recovery of cardiac function after operation.There remains debate about the potential benefits of the treatment of the non-thyroidal illness syndrome with thyroid hormone supplementation. In this paper, the clinical manifestations and related intervention measures of low T3 syndrome in various heart operations were reviewed through previous clinical experiments.

关键词: 低 T3 综合征; 心脏手术; 三碘甲状腺原氨酸

Key words: Low T3 syndrome; cardiac surgery; triiodothyrosine

登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Farwell AP. Nonthyroidal illness syndrome. Curr Opin Endocrinol Diabetes Obes, 2013, 20: 478-484.
2. Girvent M, Maestro S, Hernandez R, et al. Euthyroid sick syndrome, associated endocrine abnormalities, and outcome in elderly patients undergoing emergency operation. Surg, 1998, 123: 560-567.
3. Schilling JU, Zimmermann T, Albrecht S, et al. Low T3 syndrome in multiple trauma patients–a phenomenon or important pathogenetic factor? (German). Med Klin, (Munich), 1999, 94(Suppl 3): 66-69.
4. Schulte C, Reinhardt W, Beelen D, et al. Low T3-syndrome and nutritional status as prognostic factors in patients undergoing bone marrow transplantation. Bone Marrow Transplant, 1998, 22: 1171-8.
5. Umpierrez GE: Euthyroid sick syndrome. Umpierrez GE: Euthyroid sick syndrome. South Med J, 2002, 95: 506-513.
6. Fliers E, Bianco AC, Langouche L, et al. Thyroid function in critically ill patients. Lancet Diabetes Endocrinol, 2015, 3: 816-825.
7. Klein I, Ojamaa K. Thyroid hormone and the cardiovascular system. N Engl J Med, 2001, 344: 501-509.
8. Pingitore A, Landi P, Taddei MC, et al. Triiodothyronine levels for risk stratification of patients with chronic heart failure. Am J Med, 2005, 118: 132-136.
9. Debaveye Y, Ellger B, Mebis L, et al. Regulation of tissue iodothyronine deiodinase activity in a model of prolonged critical illness. Thyroid, 2008, 18(5): 551-560.
10. Bremner WF, Taylor KM, Baird S, et al. Hypothalamo–pituitary–thyroid axis function during cardiopulmonary bypass. J Thorac Cardiovasc Surg, 1978, 75: 392-399.
11. Holland FW, Brown PS Jr, Weintraub BD, et al. Cardiopulmonary bypass and thyroid function: A " euthyroid sick syndrome. ”. Ann Thorac Surg, 1991, 52: 46-50.
12. Robuschi G, Medici D, Fesani F, et al. Cardiopulmonary bypass: A low T4 and T3 syndrome with blunted thyrotropin (TSH) response to thyrotropic-releasing hormone (TRH). Horm Res, 1986, 23: 151-158.
13. Bartalena L, Brogioni S, Grasso L, et al. Relationship of the increased serum interleukin-6 concentration to changes in thyroid function in nonthyroidal illness. J Endocrinol Invest, 1994, 17: 269-274.
14. Cerillo AG, Sabatino L, Bevilacqua S, et al. Nonthyroidal illness syndrome in off-pump coronary artery bypass grafting. Ann Thorac Surg, 2003, 75: 82-87.
15. Velissaris T, Tang ATM, Wood PJ, et al. Thyroid function during coronary surgery with and without cardiopulmonary bypass. Eur J CardioThorac Surg, 2009, 36: 148-154.
16. Mebis L, Van den Berghe G. Thyroid axis function and dysfunction in critical illness. Best Pract Res Clin Endocrinol Metab, 2011, 25: 745-757.
17. Lee S, Farwell AP. Euthyroid sick syndrome. Compr Physiol, 2016, 6: 1071-1080.
18. Mitchell IM, Pollock JCS, Jamieson MPG, et al. The effects of cardiopulmonary bypass on thyroid function in infants weighing less than five kilograms. J Thorac Cardiovasc Surg, 1992, 103: 800-805.
19. Mainwaring RD, Lamberti JJ, Billman GF, et al. Suppression of the pituitary thyroid axis after cardiopulmonary bypass in the neonate. Ann Thorac Surg, 1994, 58(4): 1078-1082.
20. Mainwaring RD, Lamberti JJ, Carter TL Jr, et al. Reduction in triiodothyronine levels following modified Fontan procedure. J Card Surg, 1994, 9: 322-331.
21. Plumpton K, Haas NA. Identifying infants at risk of marked thyroid suppression post-cardiopulmonary bypass. Intensive Care Med, 2005, 31: 581-587.
22. Ririe DG, Butterworth JF, Hines M, et al. Effects of cardiopulmonary bypass and deep hypothermic circulatory arrest on the thyroid axis during and after repair of congenital heart defects: preservation by deep hypothermia? Anesth Analg, 1998, 87: 543-548.
23. Novitzky D, Cooper DK, Barton CI, et al. Triiodothyronine as an inotropic agent after open heart surgery. J Thorac Cardiovasc Surg, 1989, 98: 972-977.
24. Klemperer JD, Klein I, Gomez M, et al. Thyroid hormone treatment after coronary-artery bypass surgery. N Engl J Med, 1995, 333: 1522-1527.
25. Spratt DI, Frohnauer M, Cyr-Alves H, et al. Physiological effects of nonthyroidal illness syndrome in patients after cardiac surgery. Am J Physiol Endocrinol Metab, 2007, 293: E310-315.
26. Bennett-Guerrero E, Jimenez JL, White WD, et al. Cardiovascular effects of intravenous triiodothyronine in patients undergoing coronary artery bypass graft surgery. A randomized, double-blind, placebo-controlled trial. Duke T3 Study Group. JAMA, 1996, 275: 687-692.
27. Cerillo AG, Storti S, Kallushi E, et al. The low triiodothyronine syndrome: A strong predictor of low cardiac output and death in patients undergoing coronary artery bypass grafting. Ann Thorac Surg, 2014, 97: 2089-2095.
28. Choi YS, Kwak YL, Kim JC, et al. Peri-operative oral triiodothyronine replacement therapy to prevent postoperative low triiodothyronine state following valvular heart surgery. Anaesthesia, 2009, 64: 871-877.
29. Klemperer JD, Klein IL, Ojamaa K, et al. Triiodothyronine therapy lowers the incidence of atrial fibrillation after cardiac operations. Ann Thorac Surg, 1996, 61: 1323-1327.
30. Mullis-Janson SL, Argenziano M, Corwin S, et al. A randomized double-blind study of the effect of triiodothyronine on cardiac function and morbidity after coronary bypass surg. J Thorac Cardiovasc Surg, 1999, 117: 1128-1234.
31. Cerillo AG, Bevilacqua S, Storti S, et al. Free triiodothyronine: a novel predictor of postoperative atrial fibrillation. Eur J Cardiothorac Surg, 2003, 24: 487-492.
32. Park YJ, Yoon JW, Kim KI, et al. Subclinical hypothyroidism might increase the risk of transient atrial fibrillation after coronary artery bypass grafting. Ann Thorac Surg, 2009, 87: 1846-1852.
33. Dietrich JW, Müller P, Schiedat F, et al. " Nonthyroidal illness syndrome in cardiac illness involves elevated concentrations of 3,5-diiodothyronine and correlates with atrial remodeling. ”. Eur Tyroid J, 2015, 4(2): 129-137.
34. Teiger E, Menasche P, Mansier P, et al. Triiodothyronine therapy in open-heart surgery: from hope to disappointment. Eur Heart J, 1993, 14: 629-633.
35. Guden M, Akpinar B, Sagðbaþ E, et al. Effects of intravenous triiodothyronine during coronary artery bypass surgery. Asian Cardiovasc Thorac Ann, 2002, 10: 219-222.
36. Magalhaes AP, Gus M, Silva LB, et al. Oral triiodothyronine for the prevention of thyroid hormone reduction in adult valvular cardiac surgery. Braz J Med Biol Res, 2006, 39: 969-978.
37. Bettendorf M, Schmidt KG, Tiefenbascher U, et al. Transient secondary hypothyroidism in children after cardiac surgery. Pediatr Res, 1997, 41: 375-379.
38. Mainwaring RD, Lamberti JJ, Carter TL, et al. Reduction in triiodothyronine levels following modified fontan procedure. J Card Surg, 1994, 9: 322-331.
39. Babazadeh K, Tabib A, Eshraghi P, et al. Non-thyroidal illness syndrome and cardiopulmonary bypass in children with congenital heart disease. Caspian J Intern Med, 2014, 5: 235-242.
40. Talwar S, Khadgawat R, Sandeep JA, et al. Cardiopulmonary bypass and serum thyroid hormone profile in pediatric patients with congenital heart disease. Congenit Heart Dis, 2012, 7: 433-440.
41. Dagan O, Vidne B, Josefsberg Z, et al. Relationship between changes in thyroid hormone level and severity of the postoperative course in neonates undergoing open-heart surgery. Paediatr Anaesth, 2006, 16: 538-542.
42. Bettendorf M, Schmidt KG, Grulich-Henn J, et al. Triiodothyronine treatment in children after cardiac surgery: a double-blind, randomised, placebo-controlled study. Lancet, 2000, 356: 529-534.
43. Mackie AS, Booth KL, Newburger JW, et al. A randomized, double-blind, placebo-controlled pilot trial of triiodothyronine in neonatal heart surgery. J Thorac Cardiovasc Surg, 2005, 130: 810-816.
44. Mainwaring RD, Capparelli B, Schell K, et al. Pharmacokinetic evaluation of triidothyronine supplementation in children after modified fontan procedure. Circulation, 2000, 101: 1423-1429.
45. Marwali EM, Boom CE, Sakidjan I, et al. Oral triiodothyronine normalizes triiodothyronine levels after surgery for pediatric congenital heart disease. Pediatr Crit Care Med, 2013, 14: 701-708.
46. Eva M, Marwali MD, Cindy E., et al Oral Triiodothyronine for infants and children undergoing cardiopulmonary bypass. Ann Thorac Surg, 2017, 104(2): 688-695.
47. Zhang JQ, Yang QY, Xue FS, et al. Preoperative oral thyroid hormones to prevent euthyroid sick syndrome and attenuate myocardial ischemia-reperfusion injury after cardiac surgery with cardiopulmonary bypass in children: A randomized, double-blind, placebo-controlled trial. Medicine (Baltimore), 2018, 97(36): e12100.
48. Guisasola MC, Desco MM, Gonzalez FS, et al. Heat shock proteins, end effectors of myocardium ischemic preconditioning. Cell Stress Chaperones, 2006, 11: 250-258.
49. Pasqua T, Filice E, Mazza R, et al. Cardiac and hepatic role of rAtHSP70: basal effects and protection against ischemic and sepsis conditions. J Cell Mol Med, 2015, 19: 1492-1503.
50. Chen HB, Zhang XC, Cheng YF, et al. Association of heat shock protein 70 expression with rat myocardial cell damage during heat stress in vitro and in vivo. Genet Mol Res, 2015, 14: 1994-2005.
51. Yadav HN, Singh M, Sharma PL. Pharmacological inhibition of GSK-3b produces late phase of cardioprotection in hyperlipidemic rat: possible involvement of HSP 72. Mol Cell Biochem, 2012, 369: 227-233.
52. Hart DL, Heidkamp MC, Iyengar R, et al. CRNK gene transfer improves function and reverses the myosin heavy chain isoenzyme switch during post-myocardial infarction left ventricular remodeling. J Mol Cell Cardiol, 2008, 45: 93-105.
53. Wan W, Xu X, Zhao W, et al. Exercise training induced myosin heavy chain isoform alteration in the infarcted heart. Appl Physiol Nutr Metab, 2014, 39: 226-232.
54. Haas NA, Camphausen CK, Kececioglu D. Clinical review: thyroid hormone replacement in children after cardiac surgery–is it worth a try. Crit Care, 2006, 10: 213.
55. Taniguchi S, Kitamura S, Kawachi K, et al. Effects of hormonal supplements on the maintenance of cardiac function in potential donor patients after cerebral death. Eur J Cardiothorac Surg, 1992, 6: 96-101.
56. Klemperer JD, Ojamaa K, Klein I. Thyroid hormone therapy in cardiovascular disease. Prog Cardiovasc Dis, 1996, 38: 329-336.
57. Novitzky D, Cooper DKC, Reichert B. Hemodynamic and metabolic responses to hormonal therapy in brain dead potential organ donors. Transplantation, 1987, 43: 852-854.
58. Jeevanandam V, Todd B, Regillo T, et al. Reversal of donor myocardial dysfunction by triiodothyronine replacement therapy. J Heart Lung Transplant, 1994, 13: 681-687.
59. Novitzky D, Cooper DK, Rosendale JD, et al. Hormonal therapy of the brain-dead organ donor: experimental and clinical studies. Transplantation, 2006, 82: 1396-1401.
60. Macdonald PS, Aneman A, Bhonagiri D, et al. A systematic review and meta-analysis of clinical trials of thyroid hormone administration to brain dead potential organ donors. Critical Care Medicine, 2012, 40: 1635-1644.
61. Rech TH, Moraes RB, Crispim D, et al. Management of the brain-dead organ donor: a systematic review and meta-analysis. Transplantation, 2013, 95: 966-974.
62. Novitzky D, Mi Z, Sun Q, et al. Thyroid hormone therapy in the management of 63, 593 brain-dead organ donors: a retrospective review. Transplantation, 2014, 98(10): 1119-1127.
63. Goldsmith PC, Cronin MJ, Weiner RI. Dopamine receptor sites in the anterior pituitary. J Histochem Cytochem, 1979, 27: 1205-1207.
64. Leebaw WF, Lee LA, Woolf PD. Dopamine affects basal and augmented pituitary hormone secretion. J Clin Endocrinol Metab, 1978, 47: 480-487.
65. Cohen-Lehman J, Dahl P, Danzi S, et al. Effects of amiodarone therapy on thyroid function. Nat Rev Endocrinol, 2010, 6: 34-41.
66. Costigan DC, Holland FJ, Daneman D, et al. Amiodarone therapy effects on childhood thyroid function. Pediatrics, 1986, 77: 703-708.
67. Bosser G, Marcon F, Lethor JP, et al. Long-term efficacy and tolerability of amiodarone in children. Arch Mal Coeur Vaiss, 1995, 88: 731-736.
68. Rokicki W, Durmala J, Nowakowska E. Amiodarone for long term treatment of arrhythmia in children. Wiad Lek, 2001, 54: 45-50.
69. Guccione P, Paul T, Garson A Jr. Long-term follow-up of amiodarone therapy in the young: continued efficacy, unimpaired growth, moderate side effects. J Am Coll Cardiol, 1990, 15: 1118-1124.
70. Reeves RA, From GL, Paul W, et al. Nadolol, propranolol, and thyroid hormones: evidence for a membrane-stabilizing action of propranolol. Clin Pharmacol Ther, 1985, 37(2): 157-161.
71. Matsunaga M, Eguchi K, Fukuda T, et al. The effects of cytokines, antithyroidal drugs and glucocorticoids on phagocytosis by thyroid cells. Acta Endocrinol (Copenh), 1988, 119: 413-419.
72. Lee SY, Rhee CM, Leung AM, et al. A review: Radiographic iodinated contrast media-induced thyroid dysfunction. J Clin Endocrinol Metab, 2015, 100(2): 376-383.
73. Müller PB, Wolfsheimer KJ, Taboada J, et al. Effects of long-term phenobarbital treatment on the thyroid and adrenal axis and adrenal function tests in dogs. J Vet Intern Med, 2000, 14(2): 157-164.
74. Kragie L. Neuropsychiatric implications of thyroid hormone and benzodiazepine interactions. Endocr Res, 1993, 19(1): 1-32.
75. Zhang GF, Tang YL, Smith AK, et al. Alterations in pituitary-thyroid axis function among opioid-dependent subjects after acute and protracted abstinence. Addict Biol, 2009, 14(3): 310-314.
76. Gupta A, Eggo MC, Uetrecht JP, et al. Drug-induced hypothyroidism: the thyroid as a target organ in hypersensitivity reactions to anticonvulsants and sulfonamides. Clin Pharmacol Ther, 1992, 51(1): 56-67.
77. Rodríguez-Álvarez FJ, Jiménez-Mora E, Caballero M, et al. Somatostatin activates Ras and ERK1/2 via a G protein βγ-subunit-initiated pathway in thyroid cells. Mol Cell Biochem, 2016, 411(1-2): 253-260.
78. Newnham HH, Hamblin PS, Long F, et al. Effect of oral frusemide on diagnostic indices of thyroid function. Clin Endocrinol (Oxf), 1987, 26(4): 423-431.
79. Pantos C, Mourouzis I. Translating thyroid hormone effects into clinical practice: the relevance of thyroid hormone receptor a1 in cardiac repair. Heart Fail Rev, 2015, 20: 273-282.
80. Pantos C, Mourouzis I. The emerging role of TRa1 in cardiac repair: potential therapeutic implications. Oxidative Medicine and Cellular Longevity, 2014, 2014: 481482.
81. Utiger RD. Altered thyroid function in nonthyroidal illness and surgery. To treat or not to treat? N Engl J Med, 1995, 333: 1562-1563.
82. Polikar R, Burger AG, Scherrer U, et al. The thyroid and the heart. Circulation, 1993, 87: 1435-1441.
83. Choi YS, Shim JK, Song JW, et al. Efficacy of perioperative oral triiodothyronine replacement therapy in patients undergoing off-pump coronary artery bypass grafting. J Cardiothorac Vasc Anesth, 2013, 27: 1218-1223.
84. 陈群清, 莫文魁, 陈丽萍, 等. 甲状腺激素的应用对风湿性心脏病二尖瓣置换术后早期房颤复律作用的随机研究. 中华临床医师杂志: 电子版, 2013, 7(24): 11153-11156.
85. Brent GA & Hershman JM. Thyroxine therapy in patients with severe nonthyroidal illnesses and low serum thyroxine concentration. J Clin Endocrinol Metab, 1986, 63(1): 1-8.
86. Debaveye Y, Ellger B, Mebis L, et al. Tissue deiodinase activity during prolonged critical illness: effects of exogenous thyrotropin-releasing hormone and its combination with growth hormone-releasing peptide-2. Endocrinology, 2005, 146: 5604-5611.
87. Debaveye Y, Ellger B, Mebis L, et al. Effects of substitution and high-dose thyroid hormone therapy on deiodination, sulfoconjugation, and tissue thyroid hormone levels in prolonged critically ill rabbits. Endocrinology, 2008, 149: 4218-4228.
88. Van den Berghe G, de Zegher F, Baxter RC, et al. Neuroendocrinology of prolonged critical illness: effects of exogenous thyrotropin-releasing hormone and its combination with growth hormone secretagogues. J Clin Endocrinol Metab, 1998, 83(2): 309-319.
89. Villicev CM, Freitas FR, Aoki MS, et al. Thyroid hormone receptor beta-specific agonist GC-1 increases energy expenditure and prevents fat-mass accumulation in rats. J Endocrinol, 2007, 193: 21-29.