中国胸心血管外科临床杂志

中国胸心血管外科临床杂志

大鼠右室流出道重建术模型的构建

查看全文

目的 探讨建立大鼠右室流出道重建术动物模型的可行性。 方法 对 15 只成年雌性 Sprague-Dawley(SD)大鼠实施右室流出道重建术。将胶原海绵补片经过碳化二亚胺法处理,并种植人骨髓间充质干细胞(紫绀型先心病患者来源,年龄<5 岁),利用新构建的工程化心肌补片修补大鼠的右心室流出道。3 d 后,随机取 3 只大鼠处死,取出心脏,对心脏正面、内面及剖面摄片,以确定透壁切除心肌组织。4 周后,将大鼠心脏取出,作抗人线粒体抗体染色确定补片是否仍有种子细胞存活(n=4)。此外,在 1 个月、3 个月时,各处死大鼠 3 只,直视摄影观察并行马洪染色(Masson’s trichrome)观察补片降解情况(n=3)。 结果 2 只大鼠于术后 24 h 内死亡,建模总体死亡率为 13.3%(2/15)。直视摄片证明右心室流出道为透壁切除,补片完全替代了右室流出道心肌组织。4 周后补片上仍有种子细胞存活。 结论 大鼠右室流出道重建术模型可作为组织工程心肌补片(EHT)实验研究中一种稳定、可靠且经济的初筛模型。

Objective To investigate the feasibility of animal model of the reconstruction of right ventricular outflow tract in rats. Methods A total of 15 female Sprague-Dawley (SD) rats underwent right ventricular outflow tract reconstruction surgery. Before the operation, the collagen scaffolds were treated with g 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride chemistry (EDC), and seeded with human bone marrow stem cells (h-MSCs). Three days after the surgery, 3 rats were randomly sacrificed to evaluate the transmural resection of right ventricular outflow tract. One or 3 months later, other 3 rats at each timepoint were sacrificed, stained with Masson’s Trichrome to observe the degradation of scaffold. Furthermore, 4 weeks after the surgery, 4 rats were sacrificed and the hearts were sliced. Anti-human mitochondria staining was used to identify the survival of seeding cells. Results The transmural resection of right ventricular outflow tract was feasible in rats at an acceptable mortality (13.3%). After EDC treatment, the degradation rate of collagen scaffold was extended greatly. The seeding cells were detected by anti-mitochandria immunofluorescent staining in all patches 4 weeks after the operation. Conclusion Rat model of right ventricular outflow tract reconstruction could be a stable, reliable and economical screening model for engineered heart tissue research.

关键词: 右室流出道; 重建术; 大鼠; 心肌补片; 组织工程

Key words: Right ventricular outflow tract; reconstruction; rat; cardiac patch; tissue engineering

引用本文: 程悦, 康凯, 啜俊波, 覃雄海, 田鑫, 杨峰, 蒋树林, 谢宝栋. 大鼠右室流出道重建术模型的构建. 中国胸心血管外科临床杂志, 2019, 26(3): 260-263. doi: 10.7507/1007-4848.201811045 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Bhagra CJ, Hickey EJ, Van De BruaeneA, et al. Pulmonary valve procedures late after repair of tetralogy of Fallot: current perpectives and contemporary approaches to management. Can J Cardiol, 2017, 33(9): 1138-1149.
2. Kalfa D, Bacha E. New technologies for surgery of the congenital cardiac defect. Rambam Maimonides Med J, 2013, 4(3): e0019.
3. Iop L, Palmosi T, Dal Sasso E, et al. Bioengineered tissue solutions for repair, correction and reconstruction in cardiovascular surgery. J Thorac Dis, 2018, 10(Suppl 20): S2390-S2411.
4. Carrabba M, Madeddu P. Current strategies for the manufacture of small size tissue engineering vascular grafts. Front Bioeng Biotechnol, 2018, 6: 41.
5. 康凯, 曲辉, 汤继权, 等. 共价结合生长因子的胶原补片改善大鼠室壁瘤修补术后移植细胞生存率的实验研究. 中国胸心血管外科临床杂志, 2013, 20(4): 451-456.
6. 康凯, 曲辉, 汤继权, 等. 共价结合生长因子的胶原补片修补大鼠左心室室壁瘤的实验研究. 中华胸心血管外科杂志, 2012, 28(7): 429-432.
7. Wu H, Li JZ, Xie BD, et al. Lower senescence of adipose-derived stem cells than donor-matched bone marrow stem cells for surgical ventricular restoration. Stem Cells Dev, 2018, 27(9): 612-623.
8. Zhang C, Hou J, Zheng S, et al. Vascularized atrial tissue patch cardiomyoplasty with omentopexy improves cardiac performance after myocardial infarction. Ann Thorac Surg, 2011, 92(4): 1435-1442.
9. Yuan Ye K, Sullivan KE, Black LD. Encapsulation of cardiomyocytes in a fibrin hydrogel for cardiac tissue engineering. J Vis Exp, 2011, (55): 3251.
10. Wang, B, Borazjani A, Tahai M, et al. Fabrication of cardiac patch with decellularized porcine myocardial scaffold and bone marrow mononuclear cells. J Biomed Mater Res A, 2010, 94(4): 1100-1110.
11. Ratcliffe MB, Wallace AW, Salahieh A, et al. Ventricular volume, chamber stiffness, and function after anteroapical aneurysm plication in the sheep. J Thorac Cardiovasc Surg, 2000, 119(1): 115-124.
12. Cui J, Li J, Mathison M, et al. A clinically relevant large-animal model for evaluation of tissue-engineered cardiac surgical patch materials. Cardiovasc Revasc Med, 2005, 6(3): 113-120.
13. Kang K, Sun L, Xiao Y, et al. Aged human cells rejuvenated by cytokine enhancement of biomaterials for surgical ventricular restoration. J Am Coll Cardiol, 2012, 60(21): 2237-2249.
14. Mantakaki A, Fakoya AOJ, Sharifpanah F. Recent advances and challenges on application of tissue engineering for treatment of congenital heart disease. Peer J, 2018, 6: e5805.
15. Chen J, Zhan Y, Wang Y, et al. Chitosan/silk fibroin modified nanofibrous patches with mesenchymal stem cells prevent heart remodeling post-myocardial infarction in rats. Acta Biomater, 2018, 80: 154-168.
16. Yang JM, Olanrele OS, Zhang X, et al. Fabrication of hydrogel materials for biomedical applications. Adv Exp Med Biol, 2018, 1077: 197-224.