中国胸心血管外科临床杂志

中国胸心血管外科临床杂志

Th17 细胞、白介素-17 与肺癌关系的研究进展

查看全文

21 世纪初一种新型的独立亚型的 CD4+ 效应 T 细胞被发现,它能够大量分泌白介素 17(IL-17),故被命名为 Th17 细胞。近年来随着研究的深入,人们发现 Th17 细胞通过大量的分泌 IL-17 广泛的参与到人类自身免疫疾病、感染和肿瘤等多种疾病的发生、发展过程中。现在就 Th17 细胞、IL-17 与肺癌的发生、发展及预后的关系进行综述。

A new type of independent subtype CD4+ T cell which massively secreted Il-17 was found at the beginning of this century, and thus it was named as Th17 cells. With the progress of the research in recent years, Th17 cells was found to be widely involved in a variety of the human diseases such as autoimmune diseases, infections and the occurrence, development of tumors through secretion of IL-17. The relationship between Th17 cells, IL-17 and the occurrence, development and prognosis of lung cancer were reviewed.

关键词: T17 细胞; 白介素-17; 肺癌; 炎症因子; 信号通路

Key words: T17 cells; interleukin-17; lung cancer; inflammatory factors; signaling pathway

登录后 ,请手动点击刷新查看全文内容。 没有账号,
1. Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature, 2006, 441(7090): 235-238.
2. Mangan PR, Harrington LE, O'Quinn DB, et al. Transforming growth factor-beta induces development of the T(H)17 lineage. Nature, 2006, 441(7090): 231-234.
3. Veldhoen M, Hocking RJ, Atkins CJ, et al. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity, 2006, 24(2): 179-189.
4. Manel N, Unutmaz D, Littman DR. The differentiation of human T(H)-17 cells requires transforming growth factor-beta and induction of the nuclear receptor RORgammat. Nat Immunol, 2008, 9(6): 641-649.
5. Yang L, Anderson DE, Baecher-Allan C, et al. IL-21 and TGF-beta are required for differentiation of human T(H)17 cells. Nature, 2008, 454(7202): 350-352.
6. Liang SC, Tan XY, Luxenberg DP, et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med, 2006, 203(10): 2271-2279.
7. Gaffen SL. Structure and signalling in the IL-17 receptor family. Nat Rev Immunol, 2009, 9(8): 556-567.
8. Zhang X, Angkasekwinai P, Dong C, et al. Structure and function of interleukin-17 family cytokines. Protein Cell, 2011, 2(1): 26-40.
9. Toy D, Kugler D, Wolfson M, et al. Cutting edge: interleukin 17 signals through a heteromeric receptor complex. J Immunol, 2006, 177(1): 36-39.
10. Iwakura Y, Ishigame H, Saijo S, et al. Functional specialization of interleukin-17 family members. Immunity, 2011, 34(2): 149-162.
11. Fossiez F, Djossou O, Chomarat P, et al.T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J Exp Med, 1996, 183(6): 2593-2603.
12. Moseley TA, Haudenschild DR, Rose L, et al. Interleukin-17 family and IL-17 receptors. Cytokine Growth Factor Rev, 2003, 14(2): 155-174.
13. Cua DJ, Tato CM. Innate IL-17-producing cells: the sentinels of the immune system. Nat Rev Immunol, 2010, 10(7): 479-489.
14. Kolls JK, Lindén A. Interleukin-17 family members and inflammation. Immunity, 2004, 21(4): 467-476.
15. Shen F, Gaffen SL. Structure-function relationships in the IL-17 receptor: implications for signal transduction and therapy. Cytokine, 2008, 41(2): 92-104.
16. Gaffen SL. An overview of IL-17 function and signaling. Cytokine, 2008, 43(3): 402-407.
17. Onishi RM, Gaffen SL. Interleukin-17 and its target genes: mechanisms of interleukin-17 function in disease. Immunology, 2010, 129(3): 311-321.
18. Tartour E, Fossiez F, Joyeux I, et al. Interleukin 17, a T-cell-derived cytokine, promotes tumorigenicity of human cervical tumors in nude mice. Cancer Res, 1999, 59(15): 3698-3704.
19. Kato T, Furumoto H, Ogura T, et al. Expression of IL-17 mRNA in ovarian cancer. Biochem Biophys Res Commun, 2001, 282(3): 735-738.
20. Numasaki M, Fukushi J, Ono M, et al. Interleukin-17 promotes angiogenesis and tumor growth. Blood, 2003, 101(7): 2620-2627.
21. Numasaki M, Watanabe M, Suzuki T, et al.IL-17 enhances the net angiogenic activity and in vivo growth of human non-small cell lung cancer in SCID mice through promoting CXCR-2-dependent angiogenesis. J Immunol, 2005, 175(9): 6177-6189.
22. Liu L, Ge D, Ma L, et al. Interleukin-17 and prostaglandin E2 are involved in formation of an M2 macrophage-dominant microenvironment in lung cancer. J Thorac Oncol, 2012, 7(7): 1091-1100.
23. Qian Y, Liu C, Hartupee J, et al. The adaptor Act1 is required for interleukin 17-dependent signaling associated with autoimmune and inflammatory disease. Nat Immunol, 2007, 8(3): 247-256.
24. Liu C, Qian W, Qian Y, et al. Act1, a U-box E3 ubiquitin ligase for IL-17 signaling. Sci Signal, 2009, 2(92): ra63.
25. Qu F, Gao H, Zhu S, et al. TRAF6-dependent Act1 phosphorylation by the IκB kinase-related kinases suppresses interleukin-17-induced NF-κB activation. Mol Cell Biol, 2012, 32(19): 3925-3937.
26. Gu K, Li MM, Shen J, et al. Interleukin-17-induced EMT promotes lung cancer cell migration and invasion via NF-κB/ZEB1 signal pathway. Am J Cancer Res, 2015, 5(3): 1169-1179.
27. Roussel L, Houle F, Chan C, et al. IL-17 promotes p38 MAPK-dependent endothelial activation enhancing neutrophil recruitment to sites of inflammation. J Immunol, 2010, 184(8): 4531-4537.
28. Martel-Pelletier J, Mineau F, Jovanovic D, et al. Mitogen-activated protein kinase and nuclear factor kappaB together regulate interleukin-17-induced nitric oxide production in human osteoarthritic chondrocytes: possible role of transactivating factor mitogen-activated protein kinase-activated proten kinase (MAPKAPK). Arthritis Rheum, 1999, 42(11): 2399-2409.
29. Aronheim A, Engelberg D, Li N, et al. Membrane targeting of the nucleotide exchange factor Sos is sufficient for activating the Ras signaling pathway. Cell, 1994, 78(6): 949-961.
30. Jelinek T, Catling AD, Reuter CW, et al.RAS and RAF-1 form a signalling complex with MEK-1 but not MEK-2. Mol Cell Biol, 1994, 14(12): 8212-8218.
31. Chen X, Wan J, Liu J, et al. Increased IL-17-producing cells correlate with poor survival and lymphangiogenesis in NSCLC patients. Lung Cancer, 2010, 69(3): 348-354.
32. Chen X, Xie Q, Cheng X, et al. Role of interleukin-17 in lymphangiogenesis in non-small-cell lung cancer: Enhanced production of vascular endothelial growth factor C in non-small-cell lung carcinoma cells. Cancer Sci, 2010, 101(11): 2384-2390.
33. Wang L, Yi T, Kortylewski M, et al. IL-17 can promote tumor growth through an IL-6-Stat3 signaling pathway. J Exp Med, 2009, 206(7): 1457-1464.
34. Yu H, Kortylewski M, Pardoll D. Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol, 2007, 7(1): 41-51.
35. Zhang X, Yue P, Page BD, et al. Orally bioavailable small-molecule inhibitor of transcription factor Stat3 regresses human breast and lung cancer xenografts. Proc Natl Acad Sci USA, 2012, 109(24): 9623-9628.
36. Lavecchia A, Di Giovanni C, Novellino E. STAT-3 inhibitors: state of the art and new horizons for cancer treatment. Curr Med Chem, 2011, 18(16): 2359-2375.
37. Zhao B, Meng LQ, Huang HN, et al. A novel functional polymorphism, 16974 A/C, in the interleukin-12-3' untranslated region is associated with risk of glioma. DNA Cell Biol, 2009, 28(7): 335-341.
38. Cheng S, Shao Z, Liu X, et al. Interleukin 17A polymorphism elevates gene expression and is associated with increased risk of nonsmall cell lung cancer. DNA Cell Biol, 2015, 34(1): 63-68.
39. Morath R, Klein T, Seyberth HW, et al. Immunolocalization of the four prostaglandin E2 receptor proteins EP1, EP2, EP3, and EP4 in human kidney. J Am Soc Nephrol, 1999, 10(9): 1851-1860.
40. Witz IP, Levy-Nissenbaum O. The tumor microenvironment in the post-PAGET era. Cancer Lett, 2006, 242(1): 1-10.
41. Lewis CE, Pollard JW. Distinct role of macrophages in different tumor microenvironments. Cancer Res, 2006, 66(2): 605-612.
42. Ma J, Liu L, Che G, et al. The M1 form of tumor-associated macrophages in non-small cell lung cancer is positively associated with survival time. BMC Cancer, 2010, 10: 112.
43. He G, Zhang B, Zhang B, et al. Th17 cells and IL-17 are increased in patients with brain metastases from the primary lung cancer. Zhongguo Fei Ai Za Zhi, 2013, 16(9): 476-481.
44. Zhang X, Weng W, Xu W, et al. Prognostic significance of interleukin 17 in cancer: a meta-analysis. Int J Clin Exp Med, 2014, 7(10): 3258-3269.
45. Xu C, Hao K, Yu L, et al. Serum interleukin-17 as a diagnostic and prognostic marker for non-small cell lung cancer. Biomarkers, 2014, 19(4): 287-290.
46. Lin Q, Xue L, Tian T, et al. Prognostic value of serum IL-17 and VEGF levels in small cell lung cancer. Int J Biol Markers, 2015, 30(4): e359-e363.
47. Shen N, Wang J, Zhao M, et al. Anti-interleukin-17 antibodies attenuate airway inflammation in tobacco-smoke-exposed mice. Inhal Toxicol, 2011, 23(4): 212-218.
48. Kim JH, Choi YJ, Lee BH, et al. Programmed cell death ligand 1 alleviates psoriatic inflammation by suppressing IL-17A production from programmed cell death 1-high T cells. J Allergy Clin Immunol, 2016, 137(5): 1466-1476.
49. Solt LA, Kumar N, Nuhant P, et al. Suppression of TH17 differentiation and autoimmunity by a synthetic ROR ligand. Nature, 2011, 472(7344): 491-494.