中国胸心血管外科临床杂志

中国胸心血管外科临床杂志

心脏病患者非心脏手术术中循环监测技术概述

查看全文

心脏患者非心脏手术围术期风险大,死亡率高,其麻醉管理复杂且难度高。合理运用循环监测手段有利于制定合理的临床决策,改善患者预后。对循环监测技术的研究进展进行综述。本文从压力监测、血流动力学监测以及心脏结构功能监测方面将目前心脏患者非心脏手术循环监测技术研究进展进行综述。根据各种监测技术优缺点和干扰因素、患者疾病状态及手术特点和合理选择个体化循环监测方式, 为临床决策提供参考。

Patients with cardiac diseases undergoing non-cardiac surgery have high risk and mortality. Management of these kind of patients is complicated and difficult. Appropriate use of circulation monitoring is good for clinical decision making and prognosis improvement. This article reviews the circulation monitoring technologies for patients with cardiac diseases undergoing non-cardiac surgeries from pressure monitoring, haemodynamics monitoring and cardiac structure and function monitoring. Choose suitable circulation monitor individually according to advantages, disadvantages and interference factors of every technology, the comorbidities and surgical characteristics, in order to provide references for clinical decision making.

关键词: 心脏病患者; 非心脏手术; 循环监测

Key words: Patients with cardiac diseases; non-cardiac surgery; circulation monitoring

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. 刘兵, 季福绥, 林颖, 等. 中心动脉压与肱动脉压关系的探讨. 中国心血管杂志, 2010, 15(4): 277-280.
2. Dorman T, Breslow MJ, Lipsett PA, et al. Radial artery pressure monitoring underestimates central arterial pressure during vasopressor therapy in critically ill surgical patients. Crit Care Med, 1998, 26(10): 1646-1649.
3. Chen Y, Zhu Y, Chen C, et al. Relationship between noninvasive and invasive blood pressure values in end-stage renal disease patients on dialysis. Blood Press Monit, 2014, 19(2): 72-75.
4. Shangguan Q, Wu Y, Xu J, et al. The impact of arm circumference on noninvasive oscillometric blood pressure referenced with intra-aortic blood pressure. Blood Press Monit, 2015, 20(6): 316-319.
5. Bendjelid K, Romand JA. Fluid responsiveness in mechanically ventilated patients: a review of indices used in intensive care. Intensive Care Med, 2003, 29(3): 352-360.
6. Kumar A, Anel R, Bunnell E, et al. Pulmonary artery occlusion pressure and central venous pressure fail to predict ventricular filling volume, cardiac performance, or the response to volume infusion in normal subjects. Crit Care Med, 2004, 32(3): 691-699.
7. Evans DC, DoraiswamyVA, Prosciak MP, et al. Complications associated with pulmonary artery catheters: a comprehensive clinical review. Scand J Surg, 2009, 98(4): 199-208.
8. Harvey S, Harrison DA, Singer M, et al. Assessment of the clinical effectiveness of pulmonary artery catheters in management of patients in intensive care (PAC-Man): a randomised controlled trial. Lancet, 2005, 366(9484): 472-477.
9. Sussman N, Kaza V, Barshes N, et al. Successful liver transplantation following medical management of portopulmonary hypertension: a single-center series. Am J Transplant, 2006, 6(9): 2177-2182.
10. Nishikawa T, Dohi S. Errors in the measurement of cardiac output by thermodilution. Can J Anaesth, 1993, 40(2): 142-153.
11. Balik M, Pachl J, Hendl J. Effect of the degree of tricuspid regurgitation on cardiac output measurements by thermodilution. Intensive Care Med, 2002, 28(8): 1117-1121.
12. de Wilde RB, Breukers RB, van den Berg PC, et al. Monitoring cardiac output using the femoral and radial arterial pressure waveform. Anaesthesia, 2006, 61(8): 743-746.
13. Schmidt S, Westhoff TH, HofmannC, et al. Effect of the venous catheter site on transpulmonary thermodilution measurement variables. Crit Care Med, 2007, 35(3): 783-786.
14. Reuter DA, Huang C, Edrich T, et al. Cardiac output monitoring using indicator-dilution techniques: basics, limits, and perspectives. Anesth Analg, 2010, 110(3): 799-811.
15. Heerdt PM, Blessios GA, Beach ML, et al. Flow dependency of error in thermodilution measurement of cardiac output during acute tricuspid regurgitation. J Cardiothorac Vasc Anesth, 2001, 15(2): 183-187.
16. Baulig W, Schuett P, Goedje O, et al. Accuracy of a novel approach to measuring arterial thermodilution cardiac output during intra-aortic counterpulsation. J Clin Monit Comput, 2007, 21(3): 147-153.
17. Souto Moura T, Aguiar Rosa S, Germano N, et al. The accuracy of PiCCO(R) in measuring cardiac output in patients under therapeutic hypothermia - Comparison with transthoracic echocardiography. Med Intensiva, 2017.
18. Kutter AP, Bektas RN, Hofer CK, et al. Trending ability and limitations of transpulmonary thermodilution and pulse contour cardiac output measurement in cats as a model for pediatric patients. J Clin Monit Comput, 2015, 29(3): 377-383.
19. Boly CA, Schraverus P, van Raalten F, et al. Pulse-contour derived cardiac output measurements in morbid obesity: influence of actual, ideal and adjusted bodyweight. J Clin Monit Comput, 2017.
20. Costa MG, Della Rocca G, Chiarandini P, et al. Continuous and intermittent cardiac output measurement in hyperdynamic conditions: pulmonary artery catheter vs. lithium dilution technique. Intensive Care Med, 2008, 34(2): 257-263.
21. Mason DJ, O'Grady M, Woods JP, et al. Comparison of a central and a peripheral (cephalic vein) injection site for the measurement of cardiac output using the lithium-dilution cardiac output technique in anesthetized dogs. Can J Vet Res, 2002, 66(3): 207-210.
22. Davies N L. Lithium toxicity in two dogs. Journal of the South African Veterinary Association, 1991, 62(3): 140-142.
23. Krivitski NM, Kislukhin VV, Thuramalla NV. Theory and in vitro validation of a new extracorporeal arteriovenous loop approach for hemodynamic assessment in pediatric and neonatal intensive care unit patients. Pediatr Crit Care Med, 2008, 9(4): 423-428.
24. Tsutsui M, Matsuoka N, Ikeda T, et al. Comparison of a new cardiac output ultrasound dilution method with thermodilution technique in adult patients under general anesthesia. J Cardiothorac Vasc Anesth, 2009, 23(6): 835-840.
25. Crittendon I. 3rd, Dreyer WJ, Decker JA, et al Ultrasound dilution: an accurate means of determining cardiac output in children. Pediatr Crit Care Med, 2012, 13(1): 42-46.
26. Grensemann J, Bruecken U, Treszl A, et al. The influence of prone positioning on the accuracy of calibrated and uncalibrated pulse contour-derived cardiac index measurements. Anesth Analg, 2013, 116(4): 820-826.
27. 姚冬奇, 徐军, 李晨, 等. 容量状态改变影响犬脉搏轮廓持续心排血量监测准确性的研究. 中华外科杂志, 2015, 53(7): 547-552.
28. Antonini M, Meloncelli S, Dantimi C, et al. The PiCCO system with brachial-axillary artery access in hemodynamic monitoring during surgery of abdominal aortic aneurysm. J Minerva Anestesiol, 2001, 67(6): 447-456.
29. Penaz J. Criteria for set point estimation in the volume clamp method of blood pressure measurement. Physiol Res, 1992, 41(1): 5-10.
30. van Drumpt A, van Bommel J, Hoeks S, et al. The value of arterial pressure waveform cardiac output measurements in the radial and femoral artery in major cardiac surgery patients. BMC Anesthesiol, 2017, 17(1): 42.
31. Fischer MO, Diouf M, Wilde RB, et al. Evaluation of cardiac output by 5 arterial pulse contour techniques using trend interchangeability method. Medicine (Baltimore), 2016, 95(25): e3530.
32. Waldron NH, Miller TE, Thacker JK, et al. A prospective comparison of a noninvasive cardiac output monitor versus esophageal Doppler monitor for goal-directed fluid therapy in colorectal surgery patients. Anesth Analg, 2014, 118(5): 966-975.
33. Benomar B, Ouattara A, Estagnasie P, et al. Fluid responsiveness predicted by noninvasive bioreactance-based passive leg raise test. Intensive Care Med, 2010, 36(11): 1875-1881.
34. Zoremba N, Bickenbach J, Krauss B, et al. Comparison of electrical velocimetry and thermodilution techniques for the measurement of cardiac output. Acta Anaesthesiol Scand, 2007, 51(10): 1314-1319.
35. Kupersztych-Hagege E, Teboul JL, Artigas A, et al. Bioreactance is not reliable for estimating cardiac output and the effects of passive leg raising in critically ill patients. Br J Anaesth, 2013, 111(6): 961-966.
36. Suttner S, Schollhorn T, Boldt J, et al. Noninvasive assessment of cardiac output using thoracic electrical bioimpedance in hemodynamically stable and unstable patients after cardiac surgery: a comparison with pulmonary artery thermodilution. Intensive Care Med, 2006, 32(12): 2053-2058.
37. Hodgson LE, Venn R, Forni LG, et al. Measuring the cardiac output in acute emergency admissions: use of the non-invasive ultrasonic cardiac output monitor (USCOM) with determination of the learning curve and inter-rater reliability. J Intensive Care Soc, 2016, 17(2): 122-128.
38. Moller-Sorensen H, Graeser K, Hansen KL, et al. Measurements of cardiac output obtained with transesophageal echocardiography and pulmonary artery thermodilution are not interchangeable. Acta Anaesthesiol Scand, 2014, 58(1): 80-88.
39. Wong LS, Yong BH, Young KK, et al. Comparison of the USCOM ultrasound cardiac output monitor with pulmonary artery catheter thermodilution in patients undergoing liver transplantation. Liver Transpl, 2008, 14(7): 1038-1043.
40. Cheung AT, Savino JS, Weiss SJ, et al. Echocardiographic and hemodynamic indexes of left ventricular preload in patients with normal and abnormal ventricular function. Anesthesiology, 1994, 81(2): 376-387.
41. Fahy BG, Hasnain JU, Flowers JL, et al. Transesophageal echocardiographic detection of gas embolism and cardiac valvular dysfunction during laparoscopic nephrectomy. Anesth Analg, 1999, 88(3): 500-504.
42. Plotkin JS, Johnson LB, Kuo PC. Intracardiac thrombus formation during orthotopic liver transplantation: a new entity or an old enemy? Transplantation, 1996, 61(7): 1131.
43. Leung JM, O'Kelly B, Browner WS, et al. Prognostic importance of postbypass regional wall-motion abnormalities in patients undergoing coronary artery bypass graft surgery. SPI Research Group. Anesthesiology, 1989, 71(1): 16-25.
44. Feltracco P, Biancofiore G, Ori C, et al. Limits and pitfalls of haemodynamic monitoring systems in liver transplantation surgery. Minerva Anestesiol, 2012, 78(12): 1372-1384.